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Abstract: Structured illumination microscopy (SIM) has become an important technique for
optical super-resolution imaging because it allows a doubling of image resolution at speeds
compatible with live-cell imaging. However, the reconstruction of SIM images is often slow,
prone to artefacts, and requires multiple parameter adjustments to reflect different hardware or
experimental conditions. Here, we introduce a versatile reconstruction method, ML-SIM, which
makes use of transfer learning to obtain a parameter-free model that generalises beyond the task
of reconstructing data recorded by a specific imaging system for a specific sample type. We
demonstrate the generality of the model and the high quality of the obtained reconstructions by
application of ML-SIM on raw data obtained for multiple sample types acquired on distinct SIM
microscopes. ML-SIM is an end-to-end deep residual neural network that is trained on an auxiliary
domain consisting of simulated images, but is transferable to the target task of reconstructing
experimental SIM images. By generating the training data to reflect challenging imaging
conditions encountered in real systems, ML-SIM becomes robust to noise and irregularities
in the illumination patterns of the raw SIM input frames. Since ML-SIM does not require
the acquisition of experimental training data, the method can be efficiently adapted to any
specific experimental SIM implementation. We compare the reconstruction quality enabled by
ML-SIM with current state-of-the-art SIM reconstruction methods and demonstrate advantages
in terms of generality and robustness to noise for both simulated and experimental inputs, thus
making ML-SIM a useful alternative to traditional methods for challenging imaging conditions.
Additionally, reconstruction of a SIM stack is accomplished in less than 200 ms on a modern
graphics processing unit, enabling future applications for real-time imaging. Source code and
ready-to-use software for the method are available at http://ML-SIM.github.io.
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citation, and DOI.

1. Introduction

Structured illumination microscopy (SIM) is an optical super-resolution imaging technique that
was proposed more than a decade ago [1–5], and continues to stand as a powerful alternative
to techniques such as Single Molecule Localization Microscopy (SMLM) [6,7] and Stimulated
Emission Depletion (STED) microscopy [8]. The principle of SIM is that by illuminating
a fluorescent sample with a patterned illumination, interference patterns are generated that
contain information about the fine details of the sample structure that are unobservable in
diffraction-limited imaging. In the simplest case of a sinusoidal illumination pattern with a
spatial frequency of k0, the images acquired are a superposition of three copies of the sample’s

#414680 https://doi.org/10.1364/BOE.414680
Journal © 2021 Received 12 Nov 2020; revised 29 Jan 2021; accepted 30 Jan 2021; published 15 Apr 2021

https://orcid.org/0000-0002-5355-1063
http://ML-SIM.github.io
https://creativecommons.org/licenses/by/4.0/
https://crossmark.crossref.org/dialog/?doi=10.1364/BOE.414680&amp;domain=pdf&amp;date_stamp=2021-04-15


Research Article Vol. 12, No. 5 / 1 May 2021 / Biomedical Optics Express 2721

frequency spectrum, shifted by +k0, 0, and -k0. The super-resolution image is reconstructed by
isolating the three superimposed spectra and shifting them into their correct location in frequency
space. The resulting spectrum is then transformed back into real space, leading to an image that
is doubled in resolution. Isolating the three frequency spectra is mathematically analogous to
solving three simultaneous equations. This requires the acquisition of three raw images, with the
phase of the SIM patterns shifted with respect to one another along the direction of k0. Ideally,
these phase shifts are in increments of 2π/3 to ensure that the averaged illumination, i.e. the sum
of all patterns, yields a homogeneous illumination field. Finally, to obtain isotropic resolution
enhancement in all directions, this process is repeated twice, rotating the patterns by 2π/3 each
time, to yield a total of 9 images (i.e. 3 phase shifts for each of the 3 pattern orientations).

While SIM can be extended to resolve features down to the 50-60 nm range [9,10], it does
not offer the highest resolution of the available super-resolution methods. However, the inherent
speed of SIM makes it uniquely suited for live-cell imaging [11,12]. SIM also requires relatively
low illumination intensities, and therefore reduces photo-toxicity and photo-bleaching compared
to other methods. Many of the drawbacks of SIM relate to the reconstruction process, which
can be time-consuming and prone to artefacts. In all but optimal imaging conditions, deviations
from the expected imaging model or the incorrect estimation of experimental parameters (pixel
size, wavelength, optical transfer function, image filters, phase step size etc.) introduce artefacts,
degrading the final image quality [13]. This becomes especially prominent for images with low
signal-to-noise ratios, where traditional methods will mistakenly reconstruct noise as signal,
leading to artefacts that can be hard to distinguish from real features in the sample. At worst, the
reconstruction process fails completely. These issues can introduce an element of subjectivity into
the reconstruction process, leading to a temptation to adjust reconstruction parameters until the
’expected’ result is obtained. In addition, traditional reconstruction methods are computationally
demanding. The processing time for a single reconstruction in popular implementations such
as FairSIM [14], a plugin for ImageJ/Fiji, and OpenSIM running in MATLAB [15], can reach
tens of seconds even on high-end machines, making real-time processing during SIM image
acquisition infeasible. Finally, traditional methods cannot easily reconstruct images from SIM
data that is underdetermined, e.g. inputs with fewer than 9 frames and / or recordings with uneven
phase steps between frames. These drawbacks limit the applicability of SIM when imaging
highly dynamic processes [16]. Examples include the peristaltic movement of the endoplasmic
reticulum [17] or the process of cell division [18], which require low light level imaging at high
speed to reduce the effects of photo-toxicity and photo-bleaching.

In this work, we propose a versatile reconstruction method, ML-SIM, that addresses these
issues with transfer learning. Transfer learning is a branch of machine learning that aims to
exploit the knowledge obtained in an auxiliary domain to facilitate solving a specific task in the
target domain [19]. While there are several methods to achieve this, a modern approach is to
train a deep neural network to solve a similar task on a large dataset in the auxiliary domain, after
which the network can be fine-tuned by slight changes to network architecture and retrained on a
much smaller set of examples from the target domain [20]. ML-SIM uses an end-to-end deep
residual neural network that is trained in an auxiliary domain consisting of simulated images
using a high degree of randomisation. The training in the auxiliary domain is, in our case,
sufficient for the network to generalise to a wide range of practically encountered conditions. This
means that further fine-tuning of the model by training on real-world datasets, e.g. obtained from
actual SIM experiments, is mostly not necessary. However, further fine-tuning and retraining
is possible and supported by ML-SIM, thus offering maximal flexibility of the code to work
for any experimental SIM implementation. Importantly, no output images from traditional
reconstruction methods are required for training, thereby avoiding having the network undesirably
learn to reproduce the reconstruction artefacts affecting the traditional methods. In a recent
study [21], the problem of performing SIM reconstruction with a neural network, using U-Net
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[22], was attempted in exactly this manner of using traditional reconstructed outputs as targets
for training, thus simply approximating the current methods and prohibiting the network from
becoming superior. Furthermore, the proposed deep residual network of ML-SIM is found to be
significantly more capable of SIM reconstruction than the simpler U-Net – see Section 3.3. The
training data in the auxiliary domain is generated by a simulation of the SIM imaging process. It
is due to these training pairs of synthetic inputs and ideal, high-resolution targets (ground truths)
for supervised learning that ML-SIM avoids exposing the model to the traditional reconstruction
artefacts. Although the training data used is simulated and unrelated to real microscopic samples,
we find that the method indeed generalises beyond the auxiliary domain, and we demonstrate
successful application to experimental data obtained from two distinct SIM microscopes. This
greatly empowers the method in the context of generalised reconstruction for super-resolution
SIM imaging, since models can be customised to SIM setups of any configuration by changing
simulation parameters used in the generation of the training data.

2. Methods

2.1. Convolution neural networks

Artificial neural networks consist of a sequence of layers that each performs a simple operation,
typically a weighted sum followed by a nonlinear activation function, where every weight
corresponds to a neuron in the layer. The weights are trainable, meaning that they are updated
after every evaluation of an input performed during training. The updating scheme can be as
simple as gradient descent with gradients determined via backpropagation of a loss calculated
as the deviation between the network’s output and a known target. A convolutional layer is no
different, but utilises spatial information by only applying filters to patches of neighbouring pixels.
The number of learned filters in one layer is a parameter, but is typically a power of 2, such as
32, 64 or 128. The network links past layers to present layers by skip connections to avoid the
vanishing gradient problem. This type of architecture is known as a residual neural network [23].

Motivated by the results summarised in Fig. 7, and with the certainty that the entire input
stack is utilised for the output reconstruction, the RCAN architecture was chosen for ML-SIM.
The depth of the network was chosen to be around 100 convolutional layers (10 residual groups
with 3 residual blocks). The network was then trained for 200 epochs with a learning rate of
10−4, which was halved after every 20 epochs, using the Adam optimiser [24]. The models were
implemented with Pytorch and trained using an Nvidia Tesla K80 GPU for approximately a
day per model. Models have been trained on the full DIV2K image dataset except for a small
collection of randomly selected images used for validation during training.

2.2. Generating simulated data

The ideal optical transfer function is generated based on a given objective numerical aperture
(NA), pixel size and fluorescence emission wavelength. The illumination stripe patterns were
then calculated from their spatial frequency k0 and a phase ϕ,

Iθ,φ(x, y) = I0

[︂
1 −

m
2

cos
(︁
2π(kx · x + ky · y) + ϕ

)︁ ]︂
, (1)

where [kx, ky] = [k0 cos θ, k0 sin θ] for a pattern orientation θ relative to the horizontal axis. ϕ
defines the phase of the pattern (i.e. the lateral shift in the direction of k0), and m is the modulation
depth which defines the relative strength of the super-resolution information contained in the raw
images. In total, 9 images were generated for each target image, corresponding to three phase
shifts for each of three pattern orientations – see Figure S3 for a depiction. The use of ML-SIM
with different configurations of phase shifts and pattern orientations is covered in Supplement 1.
The fluorescent response of the sample can then be modelled by the multiplication of the sample
structure, S(x, y) (input image), and the illumination pattern intensity Iθ,φ(x, y). The final image,
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Dθ,φ(x, y), is then blurred by the PSF, H(x, y), and noised with the addition of white Gaussian
noise, N(x, y),

Dθ,φ(x, y) =
[︁
S(x, y)Iθ,φ

]︁
⊗ H(x, y) + N(x, y), (2)

where ⊗ is the convolution operation. The option of using Poisson noise rather than Gaussian
noise is explored in Supplement 1. In addition to the Gaussian noise, N(x, y), added pixel-by-pixel,
a random error is added to the parameters for the stripe patterns, k0, θ and ϕ, to approximate the
inherent uncertainty in an experimental setup for illumination pattern generation. The importance
of including these types of errors is described in Supplement 1.

The images generated from 2 are used as inputs in a supervised learning approach. The targets
used to calculate loss for optimising the neural network are the clean grayscale source images
used as S(x, y). These targets could as well be blurred with a PSF corresponding to the best
theoretically achievable resolution of standard SIM, but as explored in Supplement 1 this is not
found to be beneficial and instead the unmodified source images are used as targets and referred
to as the ground truths. The values for m and k0 that are used for data generation are given in
Supplement 1.

2.3. Microscopy

For the experimental data described in Section 3, two custom-built SIM microscopes were used.
For the imaging of the endoplasmic reticulum (ER), a SIM instrument based on a phase-only
spatial light modulator was used. The microscope objective used was a 60X 1.2 NA water
immersion lens and fluorescence was imaged with a sCMOS camera. Cells were labelled with
VAPA-GFP and excited by 488 nm laser light. For the imaging of the cell membrane, a novel
SIM setup based on interferometry for the pattern generation was used [25]. In this system, the
angle and phase shifts are achieved by rotation of a scanning mirror, the repeatability of which
introduces uncertainty into the phase shifting. The microscope objective used was a 60X 1.2 NA
water immersion lens, and fluorescence was imaged with an sCMOS camera. The cell membrane
was stained with a CAAX-Venus label and excited with 491 nm laser light. On both systems, 200
nm beads labelled with Rhodamine B were excited by 561 nm laser light. For both images, the
traditional reconstruction methods that have been tested managed to reconstruct the raw SIM
stacks, although with varying success for the interferometric SIM setup due to the irregularity of
the phase stepping.

3. Results

3.1. Using machine learning to train a reconstruction model

ML-SIM is built on an artificial neural network. Its purpose is to process a sequence of raw
SIM frames (i.e. a stack of nine images representing the number of raw images acquired in a
SIM experiment), into a single super-resolved image. To achieve this, a supervised learning
approach is used to train the network, where pairs of inputs and desired outputs (ground truths) are
presented during training to learn a mapping function. These training data could be acquired on a
real SIM system using a diverse collection of samples and experimental conditions. However, the
targets corresponding to the required inputs are more difficult to obtain. At least two approaches
seem possible: (A) using outputs from traditional reconstruction methods as targets [21]; and (B)
using images from other super-resolution microscopy techniques that are able to achieve higher
resolution than SIM (e.g SMLM or STED). Option (A) would prohibit ML-SIM from producing
reconstructions that surpass the quality of traditional methods and would be prone to reproducing
the artefacts mentioned in Section 1. Option (B) requires a capability to perform correlative
imaging of the same sample, which may be difficult to achieve since training requires hundreds
or even thousands of distinct data pairs [29]. In addition, both approaches require the preparation
of many unique samples to build a training set diverse enough for the model to generalise well.
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Hence, these options were not pursued in this work and we approached the problem instead by
starting with ground truth images, and simulating inputs by mimicking the SIM process in silico,
allowing for very diverse training sets to be built. We used the image set DIV2K [30], which
consists of 1000 high-resolution images of a large variety of objects, patterns and environments.
To generate the SIM data, images from the image set were first resized to a standard resolution of
512x512 pixels and transformed to greyscale. Raw SIM images were then calculated using a
SIM model adapted from the OpenSIM package [15]. The model and underlying parameters are
described in Section 2. The simulated raw SIM stacks were used as input to the neural network
and the output compared to the known ground truth in order to calculate a loss to update the
network weights. Figure 1 shows an overview of the training process with an example of a
simulated SIM input. The architecture of the neural network is further described in Supplement
1.

Fig. 1. Data processing pipeline for ML-SIM. Training data for the model is generated by
taking images from the commonly used image dataset DIV2K and simulating the imaging
process of SIM using a model adapted from the open source library OpenSIM. The simulation
can be further optimised to reflect the properties of the experimental system for which the
reconstruction method is desired, for example to match the pixel size of the detector or
numerical aperture of the detection optics. The outputs of the simulation are image stacks of
the same size as those acquired by the microscope (here 9 frames).

3.2. Application of the trained model

To begin with, we tested that the network had learned to reconstruct simulated SIM stacks. Prior
to training, a separate partition of DIV2K was selected for testing. A sample from this test
partition is shown in Fig. 2. The stripe pattern for two of the nine frames of the input SIM stack
are shown in the leftmost panel. The stripe patterns cancel out when all 9 frames are summed
together (second column), and this corresponds to the case of even illumination in a wide-field
microscope. Compared to the wide-field image, the reconstruction from ML-SIM is seen to
have a much improved resolution with a peak signal-to-noise ratio (PSNR) value more than 7 dB
higher as well as a significantly higher structural similarity index (SSIM). Beyond these metrics,
several features of the image can be seen to be resolved after reconstruction that were not visible
beforehand, such as the vertical posts seen to the right side of the cropped region.

It should also be noted that the reconstruction has not amplified the noise by introducing any
evident artefacts, even though the input image featured a significant amount of Gaussian noise in
addition to randomisation of the stripe frequency and phase – see Section 2 for definitions of
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Fig. 2. Generation of training datasets for ML-SIM. Column 1: Sample from test partition
of DIV2K (ground truth) transformed to a raw data stack of 9 frames via simulation of
the SIM imaging process. Two different orientations are shown for the excitation patterns.
Column 2: Wide-field image, obtained as the mean of the 9 raw frames. Column 3:
Super-resolved image obtained through reconstruction with ML-SIM. Column 4: Ground
truth. The image quality metrics shown in brackets are the peak signal-to-noise ratio and the
structural similarity index [26], respectively.

those parameters. As further described in Section 2, the neural network underlying ML-SIM is
different to those of generative networks, which means that the model is more strongly penalised
during training for introducing image content that is not in the real image. We argue that, even
though this results in slightly more blurred output images than would be achievable with a
generative network [31,32], the absence of artificial features is preferable in scientific imaging
applications. This trade-off is referred to as minimising the mathematical reconstruction error
(e.g. root-mean-square deviation) rather than optimising the perceptual quality [33,34].

While ML-SIM is able to reconstruct simulated SIM stack inputs, it is of course only valuable if
it also works on real SIM data, acquired experimentally. The ML-SIM model was trained on input
data from simulations, using data bearing little resemblance to real-world biological SIM data.
Any success for real-world SIM reconstructions therefore requires the model to have generalised
the SIM process in such a way that it becomes independent of image content and sample type.
This requires a realistic simulation of the SIM imaging process to generate training data that is
sufficiently diverse on the one hand, and reflects measurement imperfections as encountered in
practical SIM imaging. The former was avoided through use of a diverse training dataset, and
the latter through use of the well-known imaging response function (Section 2, Eq. (2)), and
introduction of uncertainty in the stripe patterns. To test ML-SIM on experimental data, SIM
images of different samples were acquired with two different SIM setups [35]. The resulting
reconstructed outputs are shown in Fig. 3, where they are compared to outputs of traditional
reconstruction methods: OpenSIM [15], a cross-correlation (CC-SIM) phase retrieval approach
[28,36], and FairSIM [14]. The images are grayscale images of signal intensity mapped to the
Viridis colour table. ML-SIM is seen to obtain resolution on par with the other methods but
producing less noisy background and fewer artefacts. The bottom two rows of images of beads
and cell membranes were acquired with phase steps deviating from the ideal 2π/3. This reflects a
difficulty with the interferometric SIM setup (see Section 2) to achieve equidistant, and precisely
defined, phase steps for each illumination pattern angle. This means that the reconstruction
algorithm must handle inconsistent phase changes, a factor only the cross-correlation method was
capable of handling. However, although CC-SIM has improved resolution, artefacts are apparent,
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seen as vertical lines and ringing in the images. ML-SIM, on the other hand, reconstructed with
fewer artefacts and strongly improved background rejection.

Fig. 3. Reconstruction of SIM images from four different samples imaged on two different
experimental SIM set-ups. Microscope 1 uses a spatial light modulator for stripe pattern
generation [27], while microscope 2 uses interferometric pattern generation. Both instruments
were used to image a sample consisting of fluorescent beads as well as biological samples
featuring the endoplasmic reticulum (ER) and a cell membrane, respectively. (Top) Full
field-of-view images where each upper left half shows the reconstruction output from
ML-SIM and each lower right half shows the wide-field version taken as the mean of the
raw SIM stack. (Bottom) Cropped regions of reconstruction outputs from OpenSIM [15],
CC-SIM [28], FairSIM [14] and ML-SIM. Panels in rows 2 to 5 correspond to regions
indicated by coloured boxes in the full frame images.

To further demonstrate the super-resolution performance of ML-SIM, a sample of 30 nm
microtubules labelled with Alexa-647 was imaged on microscope 1. The reconstruction outputs
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and line profiles across neighbouring microtubules for both ML-SIM and FairSIM are shown on
Fig. 4. The displayed cropped region contains two parallel microtubules which are separated by
a gap of size below the diffraction limit and thus not resolved in the wide-field image. In the
outputs from ML-SIM and FairSIM the gap is clearly visible. The distance between the peaks
in the line profile for ML-SIM and FairSIM is ≃ 150 nm, which is close to the theoretically
achievable resolution with standard SIM [3]. Analysis of the resulting OTFs after reconstruction
is also provided in Supplement 1.

Fig. 4. Reconstruction of a SIM image of tubulin structures. The reconstruction output of
ML-SIM is compared with a wide-field projected image and FairSIM. (Top) Full field-of-view
of reconstructed image and line profiles across two parallel microtubules at the position
indicated by the red line. While the microtubules are not resolved in widefield mode, both
ML-SIM and FairSIM enable them to be clearly distinguished. (Bottom) Cropped regions
of the reconstruction outputs corresponding to the area enclosed by the yellow rectangle.

The application of ML-SIM to TIRF-SIM image data using a sample image from the official
FairSIM test image repository is described in Supplement 1.

3.3. Performance assessment

We performed a quantitative comparison of ML-SIM with traditional reconstruction methods on
reconstructions of simulated raw SIM stacks generated from two image datasets; a subset of 10
DIV2K images, unseen during training, and 24 images from a dataset referred to as Kodak 24,
commonly used for image restoration benchmarking [30,37]. Parameters for OpenSIM, CC-SIM
and FairSIM were all systematically adjusted to produce the highest achievable output quality.
Consequently, each method required completely different parameter configurations than those
used for reconstructions of the experimental data shown in Fig. 3. For ML-SIM however, there
were no tunable parameters. The optical transfer function (OTF) is estimated within each method
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even though the function is known for the simulated images – this is the same premise as for
the reconstruction of the experimental samples in Fig. 3, for which the OTFs were unknown.
Each method applies an identical Wiener filter to the final reconstruction output, whereas the
output of ML-SIM is untouched. The performance scores for all methods measured in PSNR
and SSIM averaged over the entire image sets are listed in Table S1 with scores for wide-field as
a reference in terms of peak signal-to-noise ratio (PSNR) and structural similarity index (SSIM).
For both metrics, ML-SIM has the highest scores with a PSNR that is 2 dB higher than for
OpenSIM. CC-SIM and FairSIM lag behind but both methods still succeed in improving the
input beyond the baseline wide-field reference. The performance gap between OpenSIM and
the other traditional methods is likely due to a better estimation of the OTF, because OpenSIM
assumes an OTF that is similar to the one used when simulating the SIM data.

A more challenging test image than those based on DIV2K and Kodak 24 images is shown
in Fig. 5. This simulated test image is reconstructed with the same three traditional methods.
OpenSIM is found to achieve the best reconstruction quality of the three with a PSNR score of
13.84 dB versus 12.56 dB for CC-SIM and 12.88 dB for FairSIM. The same image reconstructed
with ML-SIM results in a PSNR score of 16.32 dB – again about 2 dB higher than OpenSIM.
Two cropped regions comparing OpenSIM and ML-SIM are shown in Fig. 5. The area in the
upper right corner of the test image is particularly challenging to recover due to the single-pixel
point patterns and the densely spaced vertical lines. While the points vanish in the wide-field
image, these are recovered both by OpenSIM and ML-SIM. The resolution of the point sources
are slightly superior in the ML-SIM reconstruction, and ML-SIM manages to recover the
high-frequency information in the top line pattern very well. Overall it is also seen that the
reconstruction from ML-SIM contains much less noise, which is especially evident in the zoomed
region of the face. This suggests that ML-SIM is less prone to amplify noise present in the
input image. We tested this further by gradually adding more Gaussian image noise to the input
image, and again comparing the reconstructions from the various methods. The results of this
test are shown in Fig. 6, where it is seen clearly that ML-SIM performs best at high noise levels.
As more noise is added the gap in performance is seen to increase between ML-SIM and the
other models indicating that the neural network has learned to perform denoising as part of the
reconstruction process. This is supported by the cropped regions on the right side of the figure,
which show cleaner detail in the image when compared to the input, wide-field and OpenSIM
images. OpenSIM was found to perform consistently well in this noise test, whereas FairSIM and
CC-SIM struggled to reconstruct at all for higher noise levels. This is not surprising, since added
noise may cause the parameter estimation to converge to incorrect optima, which can heavily
corrupt the reconstruction outputs. As a result, the reconstruction outputs from FairSIM and
CC-SIM were of worse quality than the wide-field reference at higher noise levels.

Several architectures were tested as part of this research to select the one most suitable for
ML-SIM. U-Net [22] is a popular, versatile and easily trained network, but its performance was
found to fall short of state-of-the-art single image super-resolution networks such as EDSR [38]
and RCAN [39]. These super-resolution networks have been customised to be able to handle
input stacks of up to 9 frames and output a single frame with no upsampling, i.e. the upsampling
modules of those networks have been omitted – see Figure S2 for a depiction. In addition to
testing different network architectures the number of frames of the input raw SIM stack, up to a
total of 9, was also varied. In the left-hand side of Fig. 7 the convergence of test scores on a
validation set during training are shown for the various architectures and input configurations
considered. It is found that SIM reconstruction with subsets containing only 3 or 6 frames still
performed significantly better than if the network learns to perform a more simple deconvolution
operation by just training on a wide-field input. This confirms that the network learns to extract
information from all 9 frames in the full stack versus a subset of it or the mean of its frames. Only
using a subset of 3 frames does however cause a substantial reconstruction quality loss compared
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Fig. 5. Reconstructions of a test target with OpenSIM and ML-SIM and comparison to the
ground truth. OpenSIM was found to be the best performing traditional method on this test
sample, both in terms of PSNR and SSIM with the other methods achieving PSNR scores of
12.56 dB (CC-SIM) and 12.88 dB (FairSIM).

Fig. 6. (Left) Reconstruction quality as measured by the structural similarity index, SSIM,
as a function of the amount of noise added to an input image. Gaussian noise is added to
every frame of the raw SIM stack. Noise is normally distributed with a standard deviation
η ·σ, where σ is the standard deviation of the input image. (Right) Images at low (η = 0) and
high noise levels (η = 9) reconstructed with OpenSIM and ML-SIM, respectively. PSNR
and SSIM scores using the ground truth as reference are shown in the lower right hand
corner of every image.

to using 6 frames, which is not surprising since the corresponding analytical reconstruction
problem becomes underdetermined for fewer than 4 frames [16]. The RCAN model performs
better than EDSR with a consistently higher PSNR score when trained on all 9 frames, while
performing similarly to EDSR when trained with 3 fewer frames. Based on these results RCAN
is chosen as the default architecture for ML-SIM. The fact that reconstruction with fewer than 9
frames is possible could be exploited for compressed, faster SIM imaging as done in [21] using a
U-Net model, although this inevitably comes at a loss of quality.

Regarding the computation time for each reconstruction method, we measured the average
time for reconstructing the raw SIM stacks based on the Kodak 24 image dataset one by one.
The timing for each method is then the mean of 24 time samples with an associated standard
deviation. The timings are shown on the right-hand side of Fig. 7. Computations were performed
on a computer running Windows 10 with an Intel i5 6500 CPU, 16 GB DDR4 RAM and a Nvidia
GTX 1080 Ti GPU. ML-SIM finishes a reconstruction in less than 200 ms, which is more than
an order of magnitude faster than the other methods. Substantial speedups are to be expected
when using neural networks due to the computations being greatly parallelisable, thus making it
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Fig. 7. (Left) Validation test set scores during training for different network architectures
and input dimensions. The two state-of-the-art single image super-resolution architectures,
RCAN and EDSR, have been modified to perform SIM reconstruction. The number of
frames of the raw SIM stack, up to a total of 9, is also varied to confirm that the network
learns to extract information from all 9 frames in the full stack. (Right) Computation time
for reconstruction of a single raw SIM stack of 9 frames. The shown times are averages of
24 consequtive reconstructions with sample standard deviations of 0.0034, 0.13, 0.51 and
3.7 seconds for ML-SIM, FairSIM, CC-SIM and OpenSIM, respectively.

easy to use GPU acceleration – this was similarly found in [40], where a neural network was
used for reconstruction of stochastic optical reconstruction microscopy images. The traditional
methods for SIM reconstruction are more difficult to parallelise, partly because the numerical
optimisation algorithms needed for parameter estimation tend to be iterative and sequential. This
therefore provides a computational advantage of ML-SIM. At 170 ms per reconstructed image
from a SIM stack of 9 frames, the reconstructed image rate is about 6 per second, corresponding
to an imaging system that captures 54 frames per second, which could provide fluent, real-time,
super-resolution feedback to the user during image acquisition.

3.4. Web app, desktop app and source code

The source code for training ML-SIM and applying the model for reconstruction is available
in a public repository on GitHub, https://github.com/charlesnchr/ML-SIM, and figshare (Code
1) [41]. This repository includes source code for generating the training data by simulating
the SIM imaging process with parameters that can be easily adapted to reflect specific SIM
setups (e.g. by changing stripe orientations, number of frames, etc.). The repository also holds
source code for a desktop program with pre-built installers for Windows, macOS and Linux.
The program makes it easy to use ML-SIM and perform batch processing via a graphical user
interface. During installation required dependencies such as Python, Pytorch and pre-trained
ML-SIM models are automatically fetched. If the pre-trained models perform suboptimally, it
is easy to train a new model that is more specific to a given SIM setup and set the program to
use this custom model for reconstruction. The program includes a plugin for µManager [42]
that enables a real-time live-view of ML-SIM reconstructed output during acquisition in many
imaging systems thanks to the wide support of camera drivers in µManager. See Supplement 1
for more details. Furthermore, we have created a web app accessible via http://ML-SIM.github.io
with a browser-based online implementation of ML-SIM that is ready for quick testing using a
pre-trained model and does not require installation of any software.

https://github.com/charlesnchr/ML-SIM
https://figshare.com/articles/software/ML-SIM/13702195
https://figshare.com/articles/software/ML-SIM/13702195
https://doi.org/10.6084/m9.figshare.13832513
http://ML-SIM.github.io
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4. Discussion

We demonstrate and validate a SIM reconstruction method, ML-SIM, which takes advantage
of transfer learning by training a model in an auxiliary domain consisting of simulated images
and generalises to the target task of reconstructing experimental SIM images with no fine-tuning
or retraining necessary. The training data was generated by simulating raw SIM image data
from images obtained from common image repositories, serving as ground truths. ML-SIM
successfully reconstructed artificial test targets that were of a completely different nature than
the diverse images used to generate the training datasets. More importantly, it successfully
reconstructed real data obtained by two distinct experimental SIM implementations. We compared
the performance of ML-SIM to widely used reconstruction methods, OpenSIM [15], FairSIM
[14], and CC-SIM [28]. In all cases, reconstruction outputs from ML-SIM contained less noise
and fewer artefacts, while achieving similar resolution improvements. Through a randomisation
of phase shifts in the simulated training data, it was also possible to successfully reconstruct
images that could not be processed successfully with two of the traditional reconstruction
methods. ML-SIM shows robustness to unpredictable variations in the SIM imaging parameters
and deviations from equidistant phase shifts. Similarly, ML-SIM reconstructed images that were
strongly degraded by noise even beyond the point where the other methods failed.

A central advantage of the transfer learning approach of the ML-SIM method is that the
simulated data that constitute the auxiliary domain can be made arbitrarily diverse by randomisa-
tion of optical parameters, enabling the model to become highly generalised for the target task.
Furthermore, the simulation can also be optimised to a specific system by changing relevant
optical parameters. In principle, this makes the method applicable to any SIM setup regardless of
its configuration. For instance, a SIM setup with another illumination pattern configuration, e.g.
5 orientations and 5 phase shifts (5x5 stacks), is trivial to support with ML-SIM by changing
just two parameters in the pipeline. General, pretrained models for SIM microscopes with
configurations for 3x3, 3x5 and 5x5 stacks are provided at http://ML-SIM.github.io along with
source code and software to use them.

A future direction could be to fine-tune the training data by incorporating a more sophisticated
image formation model. This image formation model might also take certain optical aberrations
into account. Currently, out-of-focus light from above and below the focal plane is not simulated
in the training data. As with the other reconstruction methods, this can result in artefacts in
regions of the sample with dense out-of-focus structures. Given that the spatial frequency
information required to remove this background is available in SIM, it is possible that an updated
ML-SIM network could be constructed that incorporates an efficient means for background
rejection [43,44].
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