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Abstract
The topic of mid-IR supercontinuum generation in chalcogenide photonic crystal fibers (PCF)
is treated not only in terms of modelling and numerical analysis, but also experimentally.

The experimental part of the thesis is comprised of two experiments that have been con-
ducted on a chalcogenide PCF of the composition Ge10As22Se68. In the first of those experi-
ments, the dispersion of the chalcogenide fiber is measured and compared with predictions from
numerical modelling of the same fiber in order to validate the fiber modelling. In the second
experiment the self-phase modulation occurring in the chalcogenide fiber is measured in an at-
tempt to estimate the nonlinear refractive index, n2, by fitting the measurements to numerical
simulations using the n2 as a free parameter. The value found is 3.5 · 10−18m2/W at 1.93 µm.

The main focus of the thesis is to simulate dual-polarisation pulse propagation in tapered
chalcogenide PCF. To this end an efficient interaction picture Dormand-Prince Runge-Kutta
based method has been designed and is shown to perform better than some other methods in
the literature. The simulation results reveal prominent soliton dynamics in a broad mid-IR
supercontinuum when pumping with high average power, and these predictions are found to be
consistent with the findings of a reference experiment based on the same fiber.
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CHAPTER 1
Introduction

A supercontinuum (SC) is a continuous spectrum of light that has been strongly broadened
from a narrow band pump beam. There are multiple techniques to generating SC, but the
common trend among all techniques is that nonlinear interactions within the medium give rise
to the broadening. One such medium is the photonic crystal fiber (PCF) that is the fiber type
exclusively studied in this thesis. The structure of a PCF is shown on figure 1.1, where the
cladding is seen to have five layers of air holes. The size of the cladding can vary, and in the
case of the PCFs simulated in this thesis, the cladding has only three layers. A microscope
image of one of those PCFs is shown later.

Figure 1.1: A photonic crystal fiber with the fiber dimensions pitch, Λ, and hole diameter, d. Source:
NKT Photonics.

While the phenomenon of SC dates all the way back to 1970 [1], it has mostly been in the
last 15 or so years that the field has really emerged as an active research field driven largely by
technological advances in the sources that generate supercontinua.

The applications of SC sources have consequently seen a large growth today spanning fields
such as optical coherence tomography, spectroscopy and optical frequency metrology, the latter
application being awarded a Nobel Prize in 2005 [2].

Many applications require supercontinuum in the mid-IR. However, commercial SC sources
have reached the limit of the mature silica technology given the physical limitations of silica
that renders it effectively opaque at 2 µm and above due to the material absorption increasing
wildly at this point. Hence, a shift towards other types of glasses, those known as soft glasses,
has occurred in recent years with tellurite, ZBLAN and chalcogenide attracting most attention
[3]. In addition to those glasses being transparent in the mid-IR spectrum, they also have much
higher nonlinear refractive indices, especially chalcogenide for which the nonlinear refractive
index can be 200-1000 times higher [4, 5]. To increase the nonlinearity even further, a fiber can
be tapered, which means that it has been stretched while being heated resulting in a thinner
fiber. A tapered fiber is often described by five sequential segments: before taper, down taper,
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taper waist, up taper and after taper. The fiber dimensions decrease (increase) in the down
(up) taper, but remain constant in the other three segments.

For the reasons above, tapered chalcogenide fibers are interesting candidates for use as
propagating medium in SC generation, and we shall consider them throughout the thesis, both
experimentally and numerically.

1.1 Structure of this thesis
The goal of the thesis is to model dual-polarisation pulse propagation1 in tapered chalcogenide
fibers in the mid-IR spectrum, 2-10 µm, when pumped with high average power, as well as
modelling the fibers alone (in order to find mode functions etc.), and finally to experimen-
tally characterise the same chalcogenide fibers with the purpose to compare with and validate
numerical results.

Three levels of testing and validation with different focuses and strictness will occur. In
section 4 we explore some basic and essential nonlinear effects, but at the same time this will
provide an informal test of the implementation that was developed as part of this project, since
the findings here are well-known and in some cases have analytical roots. Section 5 contains
a more strict numerical analysis of convergence and consistency with respect to analytical
solutions and conserved quantities. Then in section 6 two experiments performed during this
project are documented and the findings are compared with numerical modelling and other
experimental findings, and will thus also serve as a reality check of some of the modelling.
Finally, we should have some confidence in the implementation and we will see how well it
stands up against an actual mid-IR SC experiment based on the same tapered chalcogenide
PCF pumped with high average power.

1Referred to also as multimode propagation given the presence of two polarisation modes.



CHAPTER 2
Relevant mathematics and physics

2.1 Fourier transform and notation
In this work the following definition of the Fourier transform and inverse Fourier transform is
used

F̂{f(t)} = f̃(ω) =

∫ ∞

∞
f(t)eiωt dt, (2.1)

F̂−1{f̃(ω)} = f(t) =
1

2π

∫ ∞

−∞
f̃(ω)e−iωt dω. (2.2)

An important result that can be derived from the Fourier transform is Parseval’s theorem [6]∫ ∞

−∞
f(t)g∗(t) dt =

1

2π

∫ ∞

−∞
f̃(ω)g̃∗(ω) dω, (2.3)

where the special case when f = g = A(t) will be useful later.
The following notation for convolutions will be used

f ∗ g =

∫ ∞

−∞
f(t)g(t− t′) dt′, (2.4)

which by the convolution theorem is equivalent to f ∗ g = F̂−1
{
F̂{f}F̂{g}

}
. And finally, a

differential operator with respect to the variable x will be written as ∂x, i.e. ∂f(x)/∂x = ∂xf(x).

2.2 Optical modes in fibers
From Maxwell’s equations one can derive the wave equation that describes light propagation in
optical fibers [7]

∇×∇×E(r, t) = − 1

c2
∂2E(r, t)

∂t2
− µ0

∂2P(r, t)

∂t2
, (2.5)

where E is the electric field, P is the polarisation, µ0 is the vacuum permeability and c is the
speed of light. In deriving (2.5) it is assumed that the fiber is nonmagnetic and that there is
no free charge [8].

The polarisation is often written as a Taylor expansion in the electric field [9]

P(r, t) = ϵ0

(
χ(1) + χ(2)E(r, t) + χ(3)E(r, t)E(r, t)

)
E(r, t), (2.6)

where χn is the nth order susceptibility tensor forming tensor scalar products with the electric
field.
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The first term is the linear susceptibility χ(1), which determines the refractive index and
attenuation of the media. The second-order term is responsible for second-harmonics generation,
but since amorphous solids, such as glass (e.g. chalcogenide), display inversion symmetry, also
known as centrosymmetry, at a molecular level, the χ(2) term vanishes as well as all other even-
order terms [9, 10, 11]. The third-order term gives rise to several nonlinear effects, in particular
the Kerr effect, which we will return to in a later section.

The expression (2.6) neglects the time-dependence of the susceptibility tensor, which is
equivalent to assuming that the medium responds instantaneously, and this in turn implies that
the medium must be lossless and dispersionless [9]. Neither of those things do we want to assert,
and thus we have to introduce a convolution between the electric field and the susceptibility in
order to account for the time-dependency. If we write the polarisation as consisting of a linear
and a nonlinear part, i.e.,

P(r, t) = PL(r, t) +PNL(r, t), (2.7)

then the linear part including the time-dependent susceptibility tensor is given by [9]

PL(r, t) = ϵ

∫ t

−∞
χ(1)(t− t′)E(r, t′) dt′. (2.8)

The nonlinear part PNL is omitted here for brevity (see [7, 9]), but in a general case it consists
of convolutions of the higher-order susceptibility terms of (2.6), although it very often in fiber
optics, as well as in this work, is taken to only include convolutions with the χ(3) term.

Now in order to describe the electric modes propagating in a fiber, we return to (2.5), but
consider it in the frequency domain, while treating PNL as a small perturbation, such that we
can neglect it for now [7]. Using the convolution theorem to write the χ(1) convolution in the
frequency domain and substituting µ0ϵ0 = 1/c2 yields

∇×∇× Ẽ(r, ω) =
[
1 + χ̃(1)(ω)

] ω2

c2
Ẽ(r, ω) = ϵr(ω)k

2
0Ẽ(r, ω), (2.9)

where Ẽ(r, ω) and χ̃(1)(ω) are Fourier transforms of their time domain counterparts. The
quantity 1 + χ̃(1)(ω) is also known as the relative permittivity ϵr(ω), which is related to the
refractive index and attenuation coefficient through ϵr = (n+ iαc/2ω)2 [7].

Equation (2.9) can be solved numerically, e.g. using a finite element method (FEM) solver
such as COMSOL, in order to find the modes of a fiber. Due to the cylindrical symmetry of a
fiber, separation of variables can be employed to find solutions that fulfil

Ẽ(r, ω) = F(x, y, ω)euz, (2.10)

where u is the eigenvalue returned by COMSOL and it corresponds to −iβ − α/2 with β
being the propagation constant and α being the attenuation coefficient (confinement loss1)
both used in the following section. The eigenvalue also provides the effective refractive index
via neff = (β − iα/2)/k0.

1Generally, the attenuation coefficient consists of both confinement loss and material loss, where the latter
usually is measured and added to the confinement loss – this is described later in the thesis.
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2.3 Propagation equations
2.3.1 NLSE
Starting from wave equation (2.5) and this time explicitly including the nonlinear part of the
polarisation, however still assumed to be a small perturbation, one can derive an equation for
the propagation of an optical mode in a fiber known in the simplest form as the nonlinear
Schrödinger equation (NLSE). One major simplification that has to be made in deriving the
NLSE is that the optical field maintains its polarisation along the fiber enabling a scalar de-
scription of the mode functions. In the interest of undoing this simplification, among other
reasons, we will later consider an extended equation, the MM-GNLSE.

The NLSE takes the form of a differential equation in the field envelope A(z, t) [7]

∂zA(t, z) = −i
1

2
β2∂

2
tA(t, z) + iγ(ω0)|A(z, t)|2A(z, t), (2.11)

in which γ(ω0) is the nonlinear coefficient and β2 is the group velocity dispersion (GVD) given by
β2 = ∂2

ωβ(ω) with β being the propagation constant. The time variable t that is present in (2.11)
is called delayed time, often retarded time in the literature, because it represents the time with
respect to a frame of reference moving at the group velocity speed. This time transformation
is rather simple and not further described here (see [3, 7]). Had this transformation not been
done, equation (2.11) would have to be extended with a term β1∂tA(z, t) on the right-hand side.

Note that the nonlinear coefficient is written as a function of ω0, because it can also be
expressed as [7]

γ(ω0) =
ω0n2

cAeff
, with Aeff =

(∫ ∫∞
−∞ |F (x, y)|2 dx dy

)2∫ ∫∞
−∞ |F (x, y)|4 dx dy

, (2.12)

where n2 is the nonlinear refractive index, and Aeff is the effective mode area. The definition
of (2.12) implies that the field envelope A(z, t) has been normalised such that |A|2 represents
the optical power (i.e. [A] =

[
W1/2

]
), which is most convenient. Other normalisations can be

chosen as well, for instance normalising w.r.t. the electric field in order for A to have units of the
electric field ([V/m]), which would lead to another definition of γ [7]. The nonlinear refractive
index quantifies the Kerr effect, namely that the refractive index of a medium is dependent on
the optical intensity I in a linear fashion, n = n0 + n2I.

Higher-order dispersion can also be incorporated into the NLSE, for instance third-order
dispersion is included by adding the term i16β3∂

3
tA(t, z) on the right-hand side of (2.11) with

β3 = ∂3
ωβ(ω).

Finally, it is noted that equation (2.11) can be exactly solved in the form of soliton solutions,
of varying orders, which will be covered later as a means of validating numerical implementa-
tions.

2.3.2 GNLSE
One of the assumptions that lead to the NLSE is that the nonlinear polarisation response is
instantaneous, which is analogous to not including the effect of molecular vibrations known as
the Raman effect. In reality the response occurs over a period of time, hence the name delayed
Raman response. For chalcogenide fibers the Raman response can easily last as much as 1 ps
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[12], whereas the response time window for silica is generally below 100 fs [7]. Since the Raman
effect is also power dependent, the NLSE is only accurate for either low peak power pulses or
pulses with pulse widths much larger than the period in which the Raman response occurs. In
this work we will only consider high average power pulses with pulse widths below 2 ps, and
thus it is crucial to include the Raman response, especially when simulating chalcogenide fibers.

As in section 2.2 we will now account for the time-dependence of the susceptibility tensor as
a convolution with the electric field to state a more accurate version of the NLSE. Furthermore,
a full Taylor expansion of the propagation constant is included, as well as attenuation via the
variable α. With these additions the NLSE becomes the generalised nonlinear Schrödinger
equation (GNLSE) given by [7, 13]

∂zAz = i
∑
m≥2

imβm
m!

∂m
t A− α

2
+ iγ(ω0) (1 + iτ∂t)

[
A

∫ ∞

−∞
R(t′)|A(z, t− t′)|2 dt′

]
, (2.13)

where R(t′) is the Raman reponse function and τ is called the shock time. The Raman response
function can be written as

R(t) = (1− fR)δ(t) + fRhR(t), (2.14)

with fR being the fraction of the Kerr term that is delayed while (1− fR) is the fraction that is
instantaneous. The function hR(t) is called the delayed Raman response function. The shock
time τ is [2]

τ =
1

ω0
− 1

neff
(∂ωneff)ω=ω0

− 1

Aeff
(∂ωAeff)ω=ω0

. (2.15)

As the first term is dominant, the approximation τ = 1/ω0 is often used, but according to [7,
2] the second and especially the third term becomes important for simulating very broad SC.

2.3.3 MM-GNLSE
We now seek to further extend the GNLSE. The NLSE and GNLSE describe the propagation
of just a single mode. When simulating multimode fibers one needs to account for the coupling
between the modes. Even for a single-mode fiber two polarisation modes can exist, and they
might couple as well. The latter case is true for the fibers considered in this thesis. Hence,
we will need an equation that describe the propagation of a field when more than one mode
is present, while at the same time featuring the same depth as the GNLSE – this equation is
commonly referred to as the multimode generalised Schrödinger equation (MM-GNLSE). The
MM-GNLSE that has been chosen as a basis for this work is documented in [13], and in addition
to the features mentioned above, it also incorporates an extra delayed Raman response term
oscillating at twice the optical frequency. For the pth mode the equation reads

∂zAp = i(β
(p)
0 − β0)Ap − (β

(p)
1 − β1)∂tAp + i

∑
n≥2

β
(p)
n

n!
(i∂t)

nAp

+i
n2ω0

c

∑
l,m,n

{(
1 + iτ

(1)
plmn∂t

)
Q

(1)
plmn2Al [R ∗ (AmA∗

n)]

+
(
1 + iτ

(2)
plmn∂t

)
Q

(2)
plmnA

∗
l

[
(R · e2iω0τ ) ∗ (AmAn)

]}
,

(2.16)
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in which the so-called overlap integrals Q
(1,2)
plmn are comparable to Aeff used previously. The

overlap integrals are evaluated at ω0 according to [13], while it may be kept dependent on ω as
done in [14] in order to account for mode profile dispersion (i.e. a frequency-dependent effective
area). When simulating supercontinuum generation the effect of mode profile dispersion may be
important to include as pointed out in [15], although the approach taken in [15] differs somewhat
from the one employed here. The constants β0 and 1/β1 are free parameters corresponding to
an overall phase factor and the velocity of the temporal reference frame, respectively. As
noted previously the time variable t represents delayed time w.r.t. this reference frame, and
to minimise the overall delay the velocity should be chosen to be close to the group velocity
at the carrier frequency. Now that we have multiple modes, we choose to set β0 and β1 as the
propagation constant and inverse group velocity of the fundamental mode at w0.

The overlap integrals are defined as

Q
(1)
plmn(ω) =

ε20n
2
0c

2

12

∫
dxdy

[
F∗
p(ω) · Fl(ω)

]
[Fm(ω) · Fn(ω)

∗]

Np(ω)Nl(ω)Nm(ω)Nn(ω)
, (2.17)

Q
(2)
plmn(ω) =

ε20n
2
0c

2

12

∫
dxdy

[
F∗
p(ω) · Fl(ω)

∗] [Fm(ω) · Fn(ω)]

Np(ω)Nl(ω)Nm(ω)Nn(ω)
, (2.18)

in which the normalisation factor

Nn(ω) =
1

2

(∫
dxdy [F∗

m(ω)×Hn(ω) + Fn(ω)×H∗
m] · ez

)1/2

(2.19)

is used to ensure that the squared field envelope is in units of power.
The response functions occurring in (2.16) are defined slightly different than for the GNLSE,

R(t) = (1− fR)δ(t) +
3

2
fRh(t). (2.20)

Another difference to the GNLSE is that the shock time is now mode-dependent and there
is one for each Raman response convolution,

τ
(1,2)
plmn =

1

ω0
+
{
∂ω ln

[
Q1,2

plmn(ω)
]}

ω=ω0

. (2.21)

As noted for the GNLSE, the approximation τ
(1,2)
plmn = 1/ω0 can in many cases be used as it

tends to be the dominant term, but for very broad SC both terms may be of importance [2].
Thus we will keep the expression general for now and in a later section it will be investigated
whether this approximation is valid.

In order to solve (2.16) numerically it is advantageous to Fourier transform into the frequency
domain as the time derivatives become products, F̂{∂n

t } = [−i(ω − ω0)]
n F̂ . Applying the

Fourier transform to (2.16) yields

∂zÃp = i
[
β(p)(ω)− β0 − (ω − ω0)β1

]
Ãp

+i
n2ω0

c

[
1 +

ω − ω0

ω0

] ∑
l,m,n

F̂

{
Q

(1)
plmn2Al [R(τ) ∗ (AmA∗

n)]

+Q
(2)
plmnA

∗
l

[
(R · e2iω0τ ) ∗ (AmAn)

]}
,

(2.22)

where β(p)(ω) represents the exact functional form of the propagation constant as given by the
full Taylor expansion.
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2.4 Important quantities
The following physical quantities will be used throughout the thesis.

2.4.1 Power Spectral Density
Consider an electric field, A, for a pulse, which is normalized such that

P (t) = |A(t)|2, E =

∫ ∞

−∞
|A(t)|2 dt, (2.23)

where P and E denotes power and energy, respectively.
According to Parseval’s theorem we have that

E =

∫ ∞

−∞
|A(t)|2 dt = 1

2π

∫ ∞

0
|Ã(ω)|2 dω, (2.24)

where only positive frequencies are included and ω is the angular frequency. Making a variable
substitution from ω to λ = 2πc/ω and using dλ = dω(−2πc/ω2), we can write

E =
1

2π

∫ 0

∞
|Ã(λ)|2

(
− ω2

2πc

)
dλ (2.25)

=
1

2π

∫ 0

∞
|Ã(λ)|2

(
−(2πc/λ)2

2πc

)
dλ (2.26)

=

∫ ∞

0
|Ã(λ)|2 c

λ2
dλ. (2.27)

We define the integrand of (2.27) as the energy spectral density, ESD(λ) ≡ |Ã(λ)|2 c
λ2 . This

energy quantity is associated with a single pulse. To get the energy per time in a pulsed system,
rather than the energy per pulse, we multiply with the repetition of the laser (frep) and define
the product as the power spectral density, PSD(λ) ≡ frepESD(λ).

2.4.2 Spectrogram
When considering a pulse after some propagation, usually one would visualise it in the time
or frequency domain separately. However, it can bring some valuable insight to consider both
domains at once, in particular how a certain part of the pulse in one domain is manifested in the
other domain. A spectrogram provides a means of visualising the propagation in this fashion.

In essence the spectrogram is calculated by partitioning or gating the pulse in the time
domain into intervals of a chosen length, and then Fourier transforming the part of the field in
each interval to find its spectral equivalent. Mathematically, we can state this as the following
integral [16]

S(z, t, ω) =

∣∣∣∣∫ ∞

−∞
e−(ω−ω0)t′e−(t′−t)2/T 2

wA(z, t′) dt′
∣∣∣∣2 , (2.28)

where the Tw is the width of the moving time window in which the field is sampled and then
Fourier transformed.



CHAPTER 3
Modelling of fibers and

supercontinuum generation
3.1 Modelling photonic crystal fibers with COMSOL
The commercially available FEM solver COMSOL is used to solve (2.9), which supports the
equation as is. The resulting eigenvalues that are returned is written as λ = −iβ − α/2, where
β is the propagation constant and α is the attenuation coefficient, although this value only
includes confinement loss as previously noted (material loss can also be added as we shall see
later).

To find the optical modes of the fiber, the geometry of the fiber is defined in COMSOL after
which an appropriate discretization is performed, i.e. the geometry is partitioned into a mesh
of finite elements, or triangles in our case. For the problem to be well-defined, we must also
specify the boundary condition. For this purpose we apply a perfectly matched layer (PML),
which is an absorbing layer with the property that incident waves do not reflect at the interface
[8], but are extinguished completely. The purpose of the PML is to imitate the outer cladding
and coating of an optical fiber, which typically constitute a much larger area than the fiber
core, and thus a truncation is necessary for computational feasibility. A mode field will be
truncated at the outer boundary of a PML, and therefore it is important to ensure that the
PML is sufficiently thick. This will be addressed in the chapter on Numerical Analysis along
with a study of what mesh resolutions are necessary.

An example of the fiber geometry as defined in COMSOL can be seen in figure 3.1, and an
example of a rather coarse mesh is shown in figure 3.2.

Figure 3.1: PCF geometry as defined in COM-
SOL. The outmost layer is a PML boundary con-
dition.

Figure 3.2: Adaptive mesh of geometry with
coarse refinement resulting in roughly 6000 ele-
ments.



10 3 Modelling of fibers and supercontinuum generation

3.2 Numerical parameters
When solving the NLSE numerically, the choices of how to discretize the frequency and time
grids are worthy of careful consideration. At an overall level we simply have to make sure that
the temporal and spectral windows are sufficiently large to completely contain the field in each
respective domain, and that the grid spacings are small enough to resolve the field accurately.
Apart from discretisation parameters, we shall also treat ω0 as a free parameter. While ω0

is often taken to be the angular frequency of the pump laser, ωp, but for simulating SC that
extends to below half the wavelength of the pump laser, other values of ω0 will have to be chosen
– the reason for this will be clear in the following. When choosing ω0 to be different than ωp,
a chirp of the input pulse has to be introduced [3], while the velocity of the moving frame of
reference in the propagation equation may still favourably be chosen as the group velocity at
ωp not ω0 (to decrease overall delay and thus the required size of time window).

Domain windows. For the temporal window to have a sufficiently large span, say, twidth, we
can state a simple condition twidth = δtN , where δt is the temporal grid spacing and N is the
number of points in the field, preferably a power of 2 to enable the FFT to work efficiently.
Since time is described in a frame moving at the group velocity, the temporal window is placed
symmetrically around t = 0, such that

t ∈
[
−δtN

2
,
δtN

2

]
. (3.1)

In order for the spectral window to be large enough, we have to take the Nyquist-Shannon
sampling theorem into account [17], which states that the sampling rate, i.e. 1/δt, must be
twice that of the maximum frequency to be represented, hence 1/δt = 2fmax, where fmax is the
frequency in the moving frame, shifted ω0/(2π) from the physical frequency. Hence, we have
the following spectral window

λ ∈

[
c

ω0
2π + 1

2δt

,
c

ω0
2π − 1

2δt

]
(3.2)

From this expression it is apparent that a lower bound for δt exists, since division by zero
must be avoided as well as operating with negative frequencies. For the mid-IR SC that we will
be considering in this thesis, the spectral window should at least span from λmin = 1.2µm to
λmax = 12µm, which by use of (3.2) yields approximately 2πc/ω0 = 2.2µm and δt = 4.5 fs.

Discretization points. The pump laser considered in chapter 7 generates pulses with a
temporal width of tFWHM = 250 fs, meaning that with the above value for δt there will be over
50 points to resolve the pump pulse before propagation in the fiber. As it turns out this is more
than enough, even half as many is plenty, which can be easily checked by convergence tests
numerically and it is consistent with findings in [3].

Had the value of δt been to large, we could simply sacrifice a bit of efficiency by allowing
the spectral window to be larger than necessary – for instance reducing the short wavelength
edge results in a lower δt value (and higher ω0).

In the frequency domain we also have to make sure that a sufficiently large number of points,
say m, resolves the initial pump pulse. Given the temporal pulse width tFWHM, the frequency
width of the ESD is given by ωFWHM = 4 ln 2/tFWHM [3]. The maximum frequency grid spacing
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is thus dω = ωFWHM/m. The value of m should be something similarly large as tFWHM/δt
above.

Finally, the time and frequency spacing set two conditions on the number of discretization
points N in order for the temporal and spectral windows to be large enough. We must choose
N such that

N ≥ min

 twidth

δt
,
2πc

(
1

λmin
− 1

λmax

)
δω

 , (3.3)

where λmin, λmax are as stated previously.

3.3 Quantum noise
In realised nonlinear optical systems noise has an important influence on supercontinuum gen-
eration. Indeed noise might even be the very cause of the supercontinuum as it can induce
modulational instability (MI), where deviations from a periodic waveform are reinforced by
nonlinearity.

The noise source that is employed in this thesis when modelling supercontinuum generation
is the one-photon-per-mode model [16, 11]. In this model the input pulse is changed such that
at every frequency bin ωn a field with random phase and an energy corresponding to that of a
single photon is added, i.e.

Ã(ωn) = (h̄ω/δω)
1/2 exp(2πirn), (3.4)

where h̄ is Planck’s reduced constant, δω is the frequency grid spacing and rn is a random
number between 0 and 1.

To illustrate the significance of the noise floor as compared to an input pulse without noise,
consider figure 3.3. As expected the limit of numerical precision can be seen at around 10−15,
and importantly the quantum noise is well above this level.

To further stress the importance of including noise, we will for a moment consider the
problem that will be modelled in a later chapter, namely that of supercontinuum generation in a
tapered chalcogenide fiber. Due to the strong nonlinearity of chalcogenide and the reinforcement
of nonlinear effects by the tapering, small fluctuations in the input pulse can induce huge
fluctuations in the end of the fiber. This is exemplified in figure 3.4, in which we see the result
of five identical simulations but with different seeds for the random number generator producing
the quantum noise. An obvious way to deal with this large variance is to perform an average
over an ensemble of differently seeded fields after propagation. This gives rise to the ensemble
average of the previous five simulations also shown on figure 3.4. As seen here many of the
single shot simulations show dips of magnitude up to 40-50 dBm caused by random variation,
whereas the ensemble average of just these five propagated fields virtually removes all random
dips of more than 10 dBm. In numerical work described in a later chapter we will tend to use
even larger ensembles consisting of 10-20 propagated fields.

3.4 Solving the MM-GNLSE by numerical integration
In order to solve a differential equation such as the GNLSE (and thereby of course NLS and
MM-GNLSE) there are two main approaches in the literature, namely split-step methods and
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interaction picture methods. Perhaps the most straigtforward method is to Fourier transform
the GNLSE to get rid of temporal differential operators, and then simply use a numerical
integration scheme to solve the resulting ordinary differential equation (ODE). Such a method
is very inefficient in comparison to the above-mentioned approaches, since the linear part can
be accounted for analytically rather than numerically.

The split-step method works by solving the linear and nonlinear parts of the GNLSE sepa-
rately. The linear part consists of dispersion and linear loss and it can be solved analytically,
while the nonlinear part must be solved numerically. It is then possible to obtain the approx-
imate the solution to the GNLSE by alternately using the solutions from either part to step
forward.

The simple split-step method is rather inefficient [18], but several improvements have been
suggested, such as the symmetric split-step Blow-Wood RK2 and RK4 method [19] or the
implicit symmetric split-step method proposed by Agrawal [18, 7]. The acronym RK stands
for Runge-Kutta, while the number after RK refers to the convergence order of the method,
something that is defined and studied in chapter 5.

Interaction picture (IP) methods transform the field envelope by multiplication with an
exponential function, whereby the GNLSE no longer have two separate parts, but can be ex-
pressed by a single term on the right-hand side [17, 3, 18]. The benefit of doing so is that the
linear part is accounted for by the transformation itself, and the numerical integration scheme
only has to handle the nonlinear part in principle. This idea is a bit similar to the split-step ap-
proach, and indeed both techniques can be designed to have the same convergence rate, namely
the convergence rate given by the numerical integration. The interaction picture method used
throughout this thesis, referred to as the DPIP method (Dormand-Prince Interaction Picture),
was developed during the project, and in chapter 5 it is shown to have a high order of conver-
gence while being computationally more efficient than other methods, i.e. better performance
when considering convergence versus runtime.
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3.4.1 Interaction picture methods
The transformation of the field envelope, A(z, t), into the interaction picture is defined as

AI = e−(z−z′)D̂A, (3.5)

where AI is the interaction picture representation of the field envelope, and z′ is a separation
distance that we can freely choose. If we differentiate this expression and insert the GNLSE,
∂zA = (D̂ + N̂)A, we find

∂zAI = −D̂e−(z−z′)D̂A+ e−(z−z′)D̂(D̂ + N̂)A

= e−(z−z′)D̂N̂A = e−(z−z′)D̂N̂e(z−z′)D̂AI ⇔ ∂zAI = N̂IAI , (3.6)

in which N̂I is the interaction picture representation of the nonlinear operator.
The question is now what to choose as the separation distance z′. Some authors [17, 3] simply

choose z′ = 0, but it can also be chosen based on the numerical integration scheme applied.
A popular numerical integration scheme is the RK4, also known as the classical Runge-Kutta
method, where an iterative solution to ∂zy = f(z, y) is given by

y(z + h) = y(z) +
h

6
(k1 + 2k2 + 2k3 + k4), (3.7)

where

k1 = f(z, y(z)), k2 = f

(
z +

h

2
, y(z) +

h

2
k1

)
(3.8)

k3 = f

(
z +

h

2
, y(z) +

h

2
k2

)
, k4 = f (z + h, y(z) + hk3) . (3.9)

If we apply the RK4 method to (3.6), we will by default have to use 16 FFTs [18]: 2 for AI ,
2 for transforming to and from the interaction picture, 2 for k1 and k4, respectively, and 4 for
k2 and k3, respectively. However, since k2 and k3 are evaluated at the step midpoint, we can
simply choose z′ = z + h/2, such that the interaction picture and normal picture coincide at
this point, eliminating the need of any FFTs, thus yielding a total number of FFTs of 8. This
trick was first proposed in [20] and later applied to nonlinear optics in [18], where the method
was coined RK4IP.

Other choices of z′ will be advantageous for other numerical integration schemes. For the
DPIP method developed during this project that builds upon the Dormand-Prince Runge-Kutta
scheme, and is specified in appendix A, an optimal choice of z′ is to have it a whole step size
ahead. In short, the scheme has two function evaluations a whole step size ahead, and by
choosing z′ = z + h, we can similarly eliminate the FFTs in those two evaluations, and then
additionally remove the need to transform back from the interaction picture before the next
step, because the interaction and normal picture coincides at z + h as a consequence of the
choice. Like the RK4IP this also saves 8 FFTs, but it has a higher order of convergence as
we shall see in chapter 5, where a brief comparison of the schemes is given. For this reason
the DPIP method is used throughout the thesis with all presented simulation results of fiber
propagation relying on it.
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3.4.2 Adaptive step size control
Computation time can be greatly reduced by using a non-fixed step size that is adjusted based
on an estimation of the error that the step will introduce. This technique is referred to as
adaptive step size control. There are many possible procedures to adjust the step size given an
error estimation. A simple procedure is to reject a step if the corresponding error is above a
chosen tolerance, and then redoing the step with half the step size – conversely the step size is
doubled if the estimated error is well below the tolerance. The step size control employed in
the solver developed during this project follows the outline of [21] and is a bit more elaborate
but similar to the procedure just described.

The error estimation of a step can be inferred from considering a conserved quantity such
as the energy or photon number, which are both studied in section 5.3. However, as is shown in
section 5.3, the presence of attenuation during propagation in a fiber will cause those quantities
to be non-conserved. A possible remedy is discussed in section 5.3, but a more general approach
is to use an integration scheme with an embedded error estimator. The embedded error is usually
found as the difference between two solutions of different order both provided by the scheme. As
mentioned previously the DPIP method builds upon the Dormand-Prince scheme that unlike
RK4 has an embedded error estimator, which is another benefit of the DPIP method compared
to the RK4IP method. See appendix A for more details on the DPIP method and its embedded
error estimator.

3.5 Modelling tapered fibers
Conceptually, it is simple to extend the description of pulse propagation in plain fibers to tapered
fibers, because the only difference is that the linear operator and mode functions (hence overlap
integrals) get a dependence on the propagation distance, z. This is easy to account for in a
numerical implementation. The non-trivial problems related to modelling tapered fibers is how
the down and up taper segments should be appropriately discretized, investigated in section
7.1, and how the fiber dimensions should vary along those segments. We will address the latter
problem here.

It is often assumed that the pitch is proportional to the outer fiber diameter, and since
the outer diameter is assumed to vary linearly along the tapered regions so too will the pitch.
However, upon looking at measured dimensions of a tapered fiber [22], it was found that the
pitch after the down taper can be as much as 10 % larger than expected from this linear
dependence on the outer diameter. Hence, this assumption of exact proportionality to the
outer diameter should be abandoned.

In this section a simple model to vary the pitch and hole diameter along the down and
up taper with the constraint that the hole-to-pitch ratio varies linearly along the down taper,
while not relying on the proportionality assumption of the pitch and outer diameter. This
implies that both hole diameter and pitch will vary nonlinearly. The model may be relevant
when considering tapered fibers with large reductions of the hole-to-pitch ratio along the down
taper, because it may be more accurate than the proportionality assumption, but note that
there is no experimental evidence for this – the idea to have the aforementioned constraint is
based on speculation alone. Indeed the model was developed early on in the project, where
such large reductions of the hole-to-pitch ratio were considered, but the specific fibers that have
subsequently become the main focus of the simulations in the later chapters almost have constant
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hole-to-pitch ratio, in which case either of the three methods documented in the following will
produce very similar results.

Derivation. We consider the tapering of a fiber in which the outer diameter is shrunk linearly
over a normalised distance x such that x = 0 corresponds to just before the tapering, and x = 1
corresponds to right after the tapering. Let Λ0 and d0 be the pitch and hole diameter before
tapering, and let Λw and dw be the corresponding values in the fiber waist after tapering. The
most straight-forward way to have the pitch, Λ, and hole diameter, d, vary along the down
taper is of course linearly,

Λ(x) = (1− x)Λ0 + xΛw, d(x) = (1− x)d0 + xdw. (3.10)

With those definitions of Λ and d, the hole-to-pitch ratio, d/p, is not linear. To impose linearity
of this ratio we set the constraint that d/Λ = (1−x)d0/Λ0+xdw/Λw. An easy way to incorporate
this constraint is to have the pitch follow the linear definition of (3.10), and then define the
hole diameter from the constraint, i.e.

d(x) = [(1− x)Λ0 + xΛw]

[
(1− x)

d0
Λ0

+ x
dw
Λw

]
. (3.11)

Now rather than keeping the pitch linear and removing the offset from the constraint by ad-
justing the hole diameter alone, we might as well split this offset, call it h, equally between the
pitch and hole diameter, namely

Λ(x) = (1− x)Λ0 + xΛw + h(x), d(x) = (1− x)d0 + xdw − h(x), (3.12)

which when solved with respect to the constraint gives the following solution for h

h(x) =
(x− 1)x (Λ0 − Λw) (Λ0dw − d0Λw)

(xdw + Λw) Λ0 + (Λw − xΛw) d0
. (3.13)
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Figure 3.5: Different ways to vary pitch and hole diameter in a tapered section.

Comparison of methods. In figure 3.5 we compare the completely linear method (3.10),
the method in which only the pitch is linear (3.11), referred to as semilinear in the figure, and
finally the method where the constraint offset is split between the pitch and hole diameter
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(3.12), referred to as nonlinear in the figure. As expected the linear variation of pitch and
hole diameter leads to a nonlinear hole-to-pitch ratio, whereas the two other methods have
linear hole-to-pitch ratio. For the method (3.12), we see that both the pitch and hole diameter
varies nonlinearly due to h. In the semilinear case the hole diameter is even further from linear
variation, because the constraint offset is not split.



CHAPTER 4
Nonlinear effects in optical fibers

We will now explore some general nonlinear effects. Some of those effects are important to
achieving a supercontinuum (SC) in a fiber, while other effects are documented as a means of
testing the code against well-known phenomena, since all solutions in the following are computed
with the solver that has been developed during the project.

Several of the solutions presented in this section are not based on frequency-dependent linear
and nonlinear operators, and for those solutions the carrier wavelength is chosen freely to be 4
µm, which seems fitting as the rest of the thesis is concerned with mid-IR.

4.1 Kerr nonlinearity and group velocity dispersion
Returning to the NLS in the most simple form (2.11), which only includes a single linear term,
governing the group velocity dispersion (GVD), and a cubic nonlinear term associated with the
Kerr effect. We will now consider each of these terms separately. Solving the NLS with the
Kerr nonlinearity alone and an initial sech-shaped pulse, the solution yields a pulse that remains
constant in the time domain, because there is no dispersion, however in the frequency domain
the effect of self-phase modulation (SPM) occurs as a direct result of the Kerr nonlinearity,
causing a chirp that can be seen as the spectral broadening to the left in figure 4.1. Conversely,
when there is no Kerr nonlinearity and only GVD, the pulse is seen to broaden temporally,
while maintaining its spectral pulse width to the right in figure 4.1.

Figure 4.1: Spectral and temporal broadening in the NLS. Two leftmost plots show a solution using
only the nonlinear part, the Kerr effect, resulting in SPM, while the two rightmost plots show a solution
using only the linear part resulting in dispersion. Parameters used are γ = 0.1 (Wm)−1, P = 20 kW
(left); β2 = −10 ps2/m, P = 5 kW (right) and T0 = 1 ps (both).
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4.2 Solitons
If we combine the two effects above, the chirp from SPM can be set to exactly counterbalance
the dispersion, which leads to solutions known as solitons. This behaviour can be described by
the NLSE with only second-order dispersion,

∂zA(z, t) = −i
β2
2
∂2
tA+ iγ|A|2A, β2 < 0, (4.1)

in which the dispersion is said to be anomalous, because the GVD is negative. If we then assume
the initial condition to be A(0, t) =

√
P0sech(T/T0), where P0 is the peak power, the integer

N is the soliton order, or soliton number, and T0 is the pulse width, the solutions to (4.1) will
be soliton solutions. The soliton order is given by N2 = γP0T

2
0 /|β2|, and since it must be an

integer, this condition sets constraints on the parameters of the pulse and the GVD of the fiber.
The solution for N = 1 is called the fundamental soliton and it has a particularly simple

form [7]

A(z, t) =
√
P0sech

(
t

T0

)
exp

(
i
|β2|
2T 2

0

z

)
. (4.2)

The power of the fundamental soliton, |A|2, has no z-dependence, see figure 4.2(b), nor does
the power spectral density (PSD), see figure 4.2(a).

Higher-order solitons, N > 1, do have z-dependence in the power and PSD, but the higher-
order solitons are all periodic with the same period z′ = π

2
T 2
0

|β2| [7]. Closed form exact solutions
for some higher-order solitons also exists, an example of which we will see in the next chapter.
A simulation of a eight-order soliton is shown in figure 4.3. The propagation length has been set
to twice that of the period z′ above, which is indeed seen to give two periods in the simulation.

A test of the time window boundaries are shown on figure 4.2(c), where the reference frame
is set to move faster than the group velocity (GV) of the soliton resulting in an increasing delay
of the soliton. When the soliton reaches the right boundary of the time window, the periodic
boundary conditions of the FFT and IFFT algorithms that are used in the solver causes the
soliton to reappear in the opposing side of the time window.

(a) (b) (c) (d) (e)
Figure 4.2: Fundamental soliton(s) with parameters β2 = −10 ps2m−1, γ = 0.1 (Wm)−1, T0 = 1ps and
P = 100 W. All plots share the same second axis. (a) Soliton in frequency domain, (b) Soliton in time
domain, (c) Test of time window, (d) Soliton repulsion, (e) Soliton collision.
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Figure 4.3: A eight-order soliton solution in terms of PSD (left) and power (right) during propagation
of 2z′. Parameters used are the same as in figure 4.2, except for the power now being 6400 W.

In figure 4.2(d) and 4.2(e), we see simulations of two solitons displaced slightly in time and
with a half period phase difference (d) and equal phase (e). The phase difference causes a sort
of repulsion between the solitons leading to increasing temporal displacement between them,
whereas a repeating collision occurs for the phase matched solitons.

(a) Soliton fission (b) Dispersive wave (c) Modulational instability

Figure 4.4: Simulation of sech-shaped pulses with parameters: (a) β2 = −10 ps2m−1, γ = 0.1 (Wm)−1,
T0 = 1ps, β3 = 0.1 ps3m−1 and P = 6400 W (N = 8); (b) β2 = −2 ·10−3 ps2m−1, β3 = 0.1 ·10−3 ps3m−1,
γ = 0.025 (Wm)−1, T0 = 50 fs, P = 200 W (N = 2.5); (c) β2 = −10 ps2m−1, γ = 0.1 (Wm)−1, T0 = 10ps,
P = 22.65 kW (N = 150).

Figure 4.4(a) shows a phenomenon known as soliton fission, where β3 ̸= 0 resulting in the
pulse splitting into multiple solitons. The associated PSD has been omitted, as the fission is
most evident in the time-domain.

On figure 4.4(b) we see the formation of a so-called dispersive wave, which is a consequence
of the initial soliton being redshifted, but not necessarily due to delayed Raman response, with
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the excess energy being siphoned into the generation of the dispersive wave. From theory a
prediction of the frequency, Ω ,at which the dispersive wave is expected to be generated is given
by [7]

β2Ω
2 +

β3
3
Ω3 − γPs = 0, (4.3)

where Ps is the peak power of the redshifted soliton, taken to be equal to that of the input
pulse as an approximation, and the dispersion parameters β2 and β3 are at the frequency of
the soliton, not the frequency ω0 of the input pulse. For the simulation result shown on the
figure, two constant values for β2 and β3 were used, and using a Taylor series the corresponding
dispersion parameters at the soliton wavelength estimated to be 4.3 µm can be found. The
computed value of Ω has been indicated by the dashed line in the figure, which is seen to agree
quite well with the simulation result.

Another effect for which we can also make an analytical prediction is one known as mod-
ulational instability (MI), where a small perturbation to a periodic optical field is built up
during propagation due to nonlinearity, which leads to spectral sidebands characterised by two
frequencies of maximal gain given by [7]

Ω = ω0 ± 2π

√
2γP0

|β2|
. (4.4)

Those two predicted frequencies are indicated by the dashed lines on figure 4.4(c), where MI is
seen to occur after about 1.5 cm of propagation. The predictions seem to be consistent with the
sidebands found in the simulation given that the dashed lines pass right through what appears
to be the center of the sidebands. After the breakup of the initial pulse, the bandwidth is seen
to be significantly larger, and for this reason MI is often used for SC generation.

(a) (b)

Figure 4.5: Redshifting soliton with parameters: fR = 0.18 and (a) β2 = −0.5 · 10−3 ps2m−1,
γ = 0.025 (Wm)−1, T0 = 50 fs, P = 8 W; (b) β2 = −2 · 10−3 ps2m−1, β3 = 0.1 · 10−3 ps3m−1,
γ = 0.025 (Wm)−1, T0 = 200 fs and P = 100 W.

4.3 Delayed Raman response
The final nonlinear effect we will consider in this chapter is the delayed Raman response de-
scribed by the GNLSE, eq. (2.13). The Raman effect is of great importance to the SC generation
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simulated later. The response function used is given by (2.14), with the delayed Raman response
function being an analytical approximation often used for silica [7]

hR(t) =
τ21 + τ22
τ1τ22

exp(−t/τ2) sin(t/τ1), (4.5)

where τ1 = 12.2 fs, τ2 = 32 fs and hR(t) = 0 for t < 0.
In figure 4.5(a) we see the effect of the delayed Raman response to a low-power fundamental

soliton by a gradual redshift over a relatively large propagation distance. In figure 4.5(b) the
input pulse is sech-shaped, but the parameters do not correspond to a fundamental soliton,
N = 7.1, which in addition to the higher power quickly causes a breakup of the input pulse
leading to generation of a supercontinuum.



CHAPTER 5
Numerical Analysis

A numerical method is said to be consistent if it has an order p greater than 0 such that the
local truncation error of the nth step is bounded by δhn = O(hp+1), where h is a discretization
parameter, e.g. step size [23]. Consistency and stability are the two necessary and sufficient
conditions for convergence. Stability analysis is out of the scope of this thesis, but the numerical
methods used throughout will now be investigated for consistency and convergence with stability
being assumed.

5.1 Convergence behaviour for fiber modelling
As described previously, the fiber is modelled with COMSOL from which we get the propagation
constants as eigenvalues and mode functions as eigenvectors. One obvious way to validate
the results from COMSOL would be to compare them with analytical or experimental values.
Unfortunately, no analytical solutions exist for photonic crystal fibers. As for comparing with
experimental data, we will do exactly that in the chapter on experiments. For now we will
assess the modelling from a numerical perspective.

Firstly, the discretization resolution is addressed. The geometry representing the fiber is
discretized into a mesh of elements, in our case triangles, which was shown earlier. The meshing
of the geometry is handled adaptively by COMSOL, but a choice regarding the maximum size
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Figure 5.1: Convergence of the eigenvalue obtained from COMSOL. The relative errors are computed
with respect to the most precise computation performed. To the left the eigenvalue converges as a
function of the number of mesh elements with a fixed PML thickness that was sufficiently large as to not
limit the convergence. To the right the eigenvalue is seen to converge as the PML thickness is increased,
while the mesh grid is kept at a constant resolution high enough as to not limit convergence.
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of an element has to be made, which then determines the total number of mesh elements.
To verify that the solutions converge, we vary the mesh resolution and compare resulting

eigenvalues against the most precise solution computed, i.e. the solution with highest resolution.
We define the eigenvalue error as the relative deviation to the eigenvalue of this most precise
computation. For an arbitrary choice of frequency1, 140 THz, and with other fiber parameters
corresponding to the fiber that is experimentally investigated later, the eigenvalue errors as a
function of mesh elements are shown in figure 5.1(a).

The convergence rate is seen to be superlinear, and with more than 104 mesh elements the
relative error is within a tolerance that is also used when simulating fiber propagation.

Next the boundary condition is verified to be sufficient. The reader is reminded that we
use the perfectly matched layer (PML) as a boundary condition. For numerical efficiency we
want the PML to be as thin as possible, but the question remains how thin. This is something
that was investigated by simply varying the PML thickness while keeping the mesh resolution
constant such that the number of elements per area in the core is the same regardless of the PML
thickness. Since the PML truncates the mode functions that decrease exponentially with the
distance from the fiber core, the error arising from having a too thin PML will very quickly tend
to zero. This is indeed seen in the figure 5.1(b), where the linear curve on the semilogarithmic
plot indicates an exponentially decreasing error. A PML with a thickness of 40 µm or more is
seen to comply with our usual tolerance.

5.2 Validation and performance of GNLSE solver
First we consider the problem of simulating a higher-order soliton and afterwards a more de-
manding simulation of supercontinuum in a chalcogenide fiber – for now we do not concern
ourselves with the physics of supercontinuum, so a thorough account of the parameters and
input data used here is given in a later chapter.

5.2.1 Reproducing an analytical second order soliton solution
As described previously the chirp from self-phase modulation can exactly counterbalance the
effect of anomalous dispersion giving rise to solitons. The solitons were found as solutions to
the NLSE with an integer N being the order.

In case of the fundamental soliton, the power |A|2 has no z-dependence, and thus it is not
very useful for validating an implementation of a solver for numerically integrating the NLS.

For N = 2 there is also a closed form solution [7]

A(z, t) = 2
√

P0

[
cosh

(
3 t
T0

)
+ 3 exp

(
4iz |β2|

T 2
0

)
cosh

(
t
T0

)]
exp

(
i |β2|z
2T 2

0

)
[
cosh

(
4 t
T0

)
+ 4 cosh

(
2 t
T0

)
+ 3 cos

(
4 |β2|

T 2
0
z
)] . (5.1)

The second-order soliton does not pertain its shape over z, rather it is periodic as other higher-
order solitons with period z′ = π

2
T 2
0

|β2| .
A closed form solution also exists for N = 3 [24], but as it is even more lengthy it will not

be listed it here, nor will it be used for validation purposes or numerical convergence testing,
because the N = 2 soliton has the same nonlinear behaviour and is thus sufficient.

The expression (5.1) is plotted on figure 5.2(a), where five periods are seen to occur.
1Convergence behaviour should be the same at all frequencies for which there exist propagating modes
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(a) (b)

Figure 5.2: Solutions to the test problems. (a) Second-order soliton solution to the NLSE based
on parameters T0 = 60 fs, β2 = −0.01 ps2/m and P = 1.2 kW. (b) Supercontinuum generation in a
chalcogenide fiber studied later. The equation solved corresponds to the GNLSE but with a frequency-
dependent mode area and without delayed Raman response and attenuation. The ZDW for the fiber is
at 5 µm.

5.2.1.1 Convergence rates of interaction picture Runge-Kutta schemes
We shall now compare the different interaction picture (IP) Runge-Kutta (RK) based meth-
ods mentioned in chapter 3 when simulating the second-order soliton, namely the RK4IP and
DPIP methods, the latter being the method that was developed during the project and is used
throughout the thesis – it is specified in appendix A. Along with those two solutions, an alter-
native method based on the RK-Fehlberg scheme using the same IP separation distance, z′, as
the RK4IP method, i.e. half a step size. The RK-Fehlberg method is expected to be a fifth
order method, hence higher order than the RK4IP, but does not allow advantageous choices of
the IP separation distance as the RK4IP and DPIP methods do, and is thus expected to be less
computational efficient (i.e. the performance when considering time).

The error of a solution is evaluated as

Er =
(∑

|Aana −Anum|
)(∑

|Aana|
)−1

, (5.2)

where Aana is the analytical field envelope and Anum is the numerically computed field envelope.
In figure 5.3 we see the convergence rates of the methods, where we not only consider the

convergence with respect to computational steps but also computational time to account for the
fact that the stages of the higher-order RK schemes are more demanding, and to see whether
they truly are more efficient. The DPIP method is seen to have the highest convergence rate,
an order close to 6, for the considered test problem. When considering computational efficiency,
the RK4IP has a head start as seen in figure 5.3(b) given that it is less demanding, but the
DPIP quickly becomes more efficient, when the problem gets larger and the run time increases.

5.2.2 Convergence rate when simulating supercontinuum
generation

We now want to test convergence when simulating the more complex problem of SC generation
with frequency-dependent nonlinear coefficient and attenuation, as well as delayed Raman re-
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Figure 5.3: Comparison of convergence rate between Runge-Kutta methods when computing a second
order soliton solution for which we can use the analytical solution as reference. The slope value in the
legends refer to the slope of a linear fit describing the trends before reaching the limit set by numerical
precision 10−12.

sponse. We shall use parameters that correspond to the chalcogenide fiber simulated in later
chapters – the exact parameters that are used will be described in chapter 7, for now we will
simply consider the convergence rate when using the full MM-GNLSE.
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Figure 5.4: Comparison of convergence rates of the DPIP method with and without adaptive step size
control when simulating SC generation in a chalcogenide fiber. The slope value in the legends refer to
the slope of a linear fit describing the trends before reaching the limit set by numerical precision 10−12.

On figure 5.4 we see the convergence rates when using the DPIP with and without the
adaptive step size control described in 3.4.2. The more complex problem simulated here yields
a lower convergence order apparently, but still close to an order of 4, which is the minimal
convergence rate expected of a Dormand-Prince scheme. The adaptive step size control is not
expected to increase the convergence rate, which is also seen to be the case on the figure. It
does however give a constant factor of better performance as evidenced by the almost parallel
but downward shifted blue curves of figure 5.4.
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5.3 Conserved quantities
The simple NLSE (2.11) can be shown to conserve energy, but due to the shock term τ∂t in the
GNLSE and MM-GNLSE, those two equations do not conserve energy, but instead the photon
number given by [19]

PN (z) =

∫ ∞

−∞

|Ã(z, ω)|2

ω
dω. (5.3)

Conserved quantities are very useful when studying numerical convergence, because it gives a
clear indication of when a solution is sufficiently converged. Furthermore, they also form a good
validation check, as an implementation is conclusively incorrect if solutions are not found to
converge towards invariance of the quantities when increasing the precision (i.e. a discretization
parameter).

We shall now see if the implementation developed during this project does indeed converge
towards invariance when a quantity is expected to be conserved. Additionally, we will briefly
consider an example, where none of above the quantities are conserved, namely when loss is
introduced.
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Figure 5.5: Convergence towards invariance of energy in the NLSE (left) and photon number in the
GNLSE (mid), and a plot showing decrease of both energy and photon number in the presence of
attenuation (right) with the decrease of latter quantity being predictable.

Energy conservation. We first simulate 5 cm of propagation with the NLSE using a Gaus-
sian input pulse A(t) =

√
P exp

(
−t2/T 2

0

)
with T0 = 1 ps, P = 20 kW, β2 = 10ps2/m and

γ = 0.5 (Wm)−11. The solution shows both SPM and dispersion in a similar fashion to what
was seen in the beginning of chapter 4. We then evaluate the energy by integration of |A(t)|2 at
the end of propagation and compare it to the initial energy. The relative error when using an
increasing number of steps along the fiber is shown as the blue curve, E for energy, in the left
side of figure 5.5 with the similarly defined relative error for the photon number, denoted PN .
The relative error of the energy is seen to converge rapidly, at a rate that is consistent with
the order of the RK scheme seen in the previous sections. Approaching a relative error of 10−8,
indications of numerical precision start to appear based on the last two points. Meanwhile the
photon number is seen to not be conserved as its associated relative error converges towards a
non-zero value.



5.3 Conserved quantities 27

Given that the error is seen to converge for the energy rather than reaching a non-zero
limit well above numerical precision, implies that the choice of numerical parameters outlined
in section 3.2 are sufficient.

Photon number conservation. Using the same parameters as before but now for the
GNLSE with a Raman response function equal to that given in chapter 4, we expect the photon
number to be conserved due to the presence of the shock term. As before the relative error is
determined when using an increasing number of steps in the propagation, and the result can
be seen in the mid of figure 5.5. The convergence behaviour is the same as before, but now for
the photon number instead, while the energy this time is found to converge towards a non-zero
value.

No conserved quantities. Finally, we will again consider the problem of simulating SC
generation in a chalcogenide fiber as in section 5.2.2 for which the simulation result was shown
in figure 5.2(b). For this problem neither the energy nor the photon number is conserved due
to attenuation, α(ω), which can be seen by the declining red and blue curves to the right in
figure 5.5. However, the following relation accurately describes how the photon number varies
[21]

∂zPN (z) = −
∫ ∞

−∞
α(ω)

|Ã(z, ω)|2

ω
dω. (5.4)

By integrating this differential during propagation, an expected photon number can be deter-
mined. This expectation, denoted Ex(PN ), is shown as the dashed line in the right plot of figure
5.5, where it is seen to follow the actual photon number closely, only deviating very slightly
near the end of the fiber, which is due to the number of steps used to find the solution in this
example is not very high, approximately 1000, and so by increasing the number of steps, a
better agreement will be found.

An application of (5.4) is to use the deviation between the expected and computed photon
number as an error estimator, which can then be used for adaptive step size control. This
technique was found to provide a good alternative to the adaptive step size control based on
the Runge-Kutta embedded error estimators mentioned in section 3.4, and is particularly useful
for simpler RK schemes that do not even have built-in error estimates, such as the RK4 scheme
described previously. However, the technique does not work when simulating tapered fibers,
because even without any attenuation, the photon number is not conserved when the linear
operator is dependent on propagation distance as is the case in a taper [3]. Therefore, the
technique is not actually employed in the simulations performed in chapter 7, and the method
of adaptive step size control described in chapter 3 is used instead.



CHAPTER 6
Experiments

In this chapter two experiments will be described that have been conducted during the project
with the assistance of Christian R. Petersen. In both experiments a chalcogenide fiber fabricated
by Selenoptics is studied. The fiber that has been measured upon has a slightly smaller core
than the one we model in chapter 7, but the material composition Ge10AS22Se68 is identical.
Since the two fibers are so similar, we can reasonably expect that a good agreement between
experiment and numerical modelling of one of the fibers will also hold for the other.

Finding agreement between modelling and experiment will be addressed in the first experi-
ment, where we measure the dispersion in the fiber and compare with numerical results obtained
from COMSOL. In the second experiment we measure the self-phase modulation (SPM) that
occur in the fiber in order to estimate the nonlinear refractive index, which will be used in the
following chapter on simulating SC. In this experiment the fiber dimensions are also measured
using an optical microscope and a clamp meter providing the values Λ = 8.1 ± 0.1µm (pitch)
and d = 3.6± 0.1µm (hole diameter), which are used throughout this chapter in the context of
fiber modelling. More details on the fiber modelling are given in the next chapter.

6.1 Dispersion measurement
For simulating supercontinuum one important effect to describe accurately is dispersion and the
associated position of the zero-dispersion wavelength (ZDW). Simulations rely on fiber param-
eters, such as the dispersion, computed with COMSOL, because it would simply be infeasible
to experimentally measure the dispersion for each of the many different fiber geometries that
occur throughout the down and up taper areas in the very broad frequency window spanning
over 10 µm. Hence, it is important to verify that the modelling of the fibers is accurate, so that
we can trust the implementation of the linear operator.

6.1.1 Experimental method and setup
The method employed is a spectral interferometry-based technique as outlined in [25], but here
we apply it to a sequence of different configurations in order to increase the bandwidth of the
spectrum that we can accurately characterise.

The setup is essentially similar to that of a Mach-Zehnder interferometer, but with one arm
being of adjustable length, L, and the fiber to be characterised being part of the other arm –
see figure 6.1.The SC source has a bandwidth spanning up to about 5 µm.

The fiber is assumed to be an endlessly single-mode fiber, such that the measured dispersion
can be ascribed to the fundamental mode. However, there might be two polarisation modes
propagating simultaneously, which could me remedied by using a polariser in the setup situated
before the first beam splitter, but as numerical modelling reveals the polarisation modes of the
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Figure 6.1: Experimental setup to determine chromatic dispersion.

fundamental mode are virtually identical with respect to dispersion, and thus we have chosen
to not distinguish between the two and rather treat them as one in the experiment.

At the detector the optical path difference (OPD) will be given by

∆p(λ) = pref − ptest(λ) = L− l − neff(λ)z, (6.1)

where l is the path length in the air in the test arm, neff and z is respectively the effective
refractive index of the propagating mode and the length of the fiber.

The interference maxima (fringes with constructive inteference) are given by

L− l − neff(λ)z = mλ, (6.2)

where m is the interference order of the fringes. The effective refractive index is now approxi-
mated by a modified Cauchy dispersion formula [25]

neff(λ) = A1λ
−4 +A2λ

−2 +A3 +A4λ
2 +A5λ

4, (6.3)

where Ai are constants to be determined. Inserting (6.3) into (6.2), we find

a1λ
−5 + a2λ

−3 + a3λ
−1 + a4λ+ a5λ

3 = m, (6.4)

where a1 = −A1z, a2 = −A2z, a3 = L − l − A3z, a4 = −A4z and a5 = −A5z. If we measure
the wavelengths to which the interference orders m correspond, as well as measuring the fibre
lengt z, a fitting scheme can now be applied to (6.4) to obtain the coefficients.

When the coefficients are determined, we are able to describe neff by means of eq. (6.3). By
definition the dispersion can then be evaluated as D = ∂λβ1 = −(2πc/λ2)β2, where β1 = 1/vg
is the inverse group velocity that can be written

β1 = ∂ωβ =
1

c
∂ω [neff(ω)ω] =

1

c
[neff(ω) + ∂ωneff(ω)]

=
1

c
[neff(λ)− ∂λneff(λ)] , (6.5)

where the definition of the effective refractive index has been used β = neff(2π/λ) = neff ω/c
as well as the chain rule. Inserting (6.3) into (6.5) to obtain β1, the formula for the dispersion
becomes

D = ∂λβ1 =
1

c

[
−20A1λ

−5 − 6A2λ
−3 − 2A4λ− 12A5λ

3
]
. (6.6)

The zero dispersion wavelength (ZDW) is then found by finding the root of the dispersion,
D(λ) = 0.
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Figure 6.2: The unprocessed output from the spectrometer is shown to the left. The central part
of the spectrum is enlarged in the top-mid plot, which shows the point at which the optical paths in
the two arms are exactly equal. In the bottom-mid plot, the interference maxima with their associated
wavelengths have been identified, which is shown on the top-right plot together with the resulting fit.
The fit coefficients can then be used to express the dispersion shown to in the bottom-right.

6.1.2 Results
The fiber length was measured to be 18.5 cm. The spectrum obtained directly from the spec-
trometer is shown to the left of figure 6.2. The space near 3.5 µm shows the equalisation point,
where the optical paths are exactly equal. There is very noticeable noise in both ends of the
spectrum, and therefore we truncate the spectrum at about 2.8 µm and 4.5 µm. The truncated
spectrum with the identified interference maxima at their respective wavelength, which can
then be used for fitting, can be seen in the bottom-mid of the figure.

By performing a nonlinear least squares fit of the Cauchy equation, shown in the top-right,
we can then evaluate the dispersion from the coefficients, shown in the bottom-right. Clearly,
the dispersion does not reach zero within the interval covered by the data sample points, and
thus the ZDW has to be determined via extrapolation. For the extrapolation to be accurate, the
dispersion within the range that we can actually measure must have very little uncertainty, since
the extrapolation will naturally enhance any uncertainty already inherent in the fit. For this
reason, and with the prospect of covering an even larger bandwidth, we repeat the measurement
with different lengths of the reference arm, which will shift the equalisation point.

The measurement was performed at more than 10 different reference arm lengths, and the
spectra obtained are shown in figure 6.3(a) with the resulting dispersion fits in 6.3(b).

We can now average over all the fits to increase the accuracy. The interval from about 3.2
µm to 4.2 µm is covered by all the measurements, referred to as 100 % coverage, and will thus
have the highest expected accuracy.
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Figure 6.3: Data was obtained with several different lengths for the reference arm resulting in the
equalisation point for the OPD to occur at different wavelengths (a). This results in multiple fits of the
dispersion (b), which can then be combined for additional accuracy. The sample point distribution shown
in (b) indicate how many of the measurements have spectra whose range overlap at a given frequency –
for instance only a single measurement extended beyond 4.5 µm as can be seen.

We can now proceed to compare the averaged fits with numerical results from COMSOL.
As noted in the beginning of the chapter the pitch and hole diameter were measured to be Λ =
8.1±0.1µm and d = 3.6±0.1µm, where the uncertainty stems from the limited resolution of the
optical microscope and the uncertainty of the outer diameter when measured with clamp meter.
This measurement will be elaborated shortly, but for now we will assume the uncertainty of
±0.1µm of both parameters, and therefore perform four computations of the fiber (i.e. the four
combinations of Λ = {8.0, 8.2} µm and d = {3.5, 3.7} µm) to compare with the experimental
results. On figure 6.4 those four computations of the dispersion and the corresponding ZDWs
are shown together with averaged fit of the experimental data and the extrapolated ZDW.

Overall the agreement is decent, especially in area with 100 % sample coverage, where the
fit is verified to be completely within the bounds of uncertainty for all wavelengths. However,
there is a 2 % error in the ZDW, presumably due to the use of extrapolation. Most likely a
better agreement would be found if a SC source with a larger bandwidth is used such that the
sample coverage would extend to at least beyond the ZDW.

So far we have only considered uncertainty in the fiber dimensions, but since the length
of the fiber is also used in evaluating the dispersion, the uncertainty in this parameter will
also have an impact on the end result. The fiber length can be measured to within millimeter
precision, and on figure 6.5 we see the different end results based on one of the measurements
when assuming an uncertainty of ±1 mm. Evidently, the final fit is not very sensitive to small
changes in the fiber length, certainly not near the ZDW, and hence the uncertainty of ±1 mm
in z is not crucial.
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Figure 6.4: Dispersion obtained from averaged fits compared to simulation results from COMSOL. As
no samples points correspond to D = 0, the ZDW was extrapolated to be 4.60 µm, whereas the ZDWs
obtained from modelling are 4.69, 4.74, 4.76 and 4.80 µm. This corresponds to an error at around 2
%, which seems reasonable given the uncertainty inherent in extrapolation. Meanwhile, the error in the
interval with 100 % sample coverage is completely within the bounds of uncertainty.
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Figure 6.5: Sensitivity on fiber
length for the resulting dispersion fit.
The measured fiber length was z =
18.5 ± 0.1 cm, and since z is an input
parameter to the dispersion formula,
we consider here how the uncertainty
propagates into the resulting fit. The
deviation between the two extremes is
significant for wavelengths below 3.5,
but very small in the area near the
ZDW.

6.2 Estimation of nonlinear refractive index
The higher value of the nonlinear refractive index, n2, is what makes chalcogenide among other
soft glasses much more nonlinear than silica. For chalcogenide n2 can be 100-400 times larger
than it is for silica. It is an important input parameter when simulating SC generation since the
product between the power and n2 essentially determines the degree of nonlinearity. As we have
seen previously, the first nonlinear effect that develops when pumping with a monochromatic
source is SPM, which we want to now measure in order to estimate the value of n2. Since the
nonlinear refractive index is treated as a constant, even though it does in fact vary slightly with
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wavelength, what we will do in this experiment is to vary the power and consider the resulting
SPM, which then is matched to a numerical result by using n2 as a free parameter in a nonlinear
optimisation algorithm. The optimisation algorithm used to find the optima is fminsearch in
MATLAB.

The manufacturer of the fiber, Selenoptics, has noted on a data sheet of the fiber that they
have measured the nonlinear refractive index to be 8.8 · 10−18m2/W at 1.55 µm wavelength.
We will estimate the value at 1.93 µm, which is expected to be significantly lower if studies of
other chalcogenide compositions are any indication [26].

6.2.1 Experimental setup
A typical way of measuring the value of n2 is to use the z-scan technique [7], in which a sample
of the material to be characterised is moved through different positions (hence the name) after
the focal point of a laser beam. At each position the beam radius is then measured by a
detector, and due to the self-focusing effect associated with the Kerr effect, the correlation
between position and measured beam radius can be used to calculate n2.

Due to the topic of this thesis, and availability of experimental equipment, the setup that
have been used in this experiment revolves around propagation in a fiber and is overall simpler
and presumably more inaccurate than the z-scan technique. In the setup a monochromatic
mode-locked pump laser is propagated through a fiber consisting of the material we wish to
measure n2 for, after which the spectrum is recorded with a spectrometer. The transmission
through the fiber must be measured as well to be able to estimate the pulse peak power after
coupling into the beginning of the fiber. The setup is shown on 6.6.

The pump laser has a 31 MHz repetition rate of sech2-shaped pulses with a FWHM of 1.9
ps at a wavelength of 1.93 µm. The integration time of the spectrometer is 20 ms, and the
spectral resolution of spectrograms is 5 nm.

The method employed here is expected to be less accurate than the z-scan technique, because
the latter involves only a small sample of the material, whereas the method here will be affected
by the losses and propagation effects of an optical fiber.

Mode-locked pump laser

Spectrometer
Fiber

M

M

Power meter

Figure 6.6: Experimental setup for a simple method
to quantify the nonlinear refractive index. The power
meter is sometimes connected to determine transmis-
sion at different power levels.

Figure 6.7: Microscope image of PCF
fiber. Outer diameter was measured with
a clamp meter to be 120± 2µm, which can
then be used as a scale to obtain the noted
pitch and hole diameter.
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6.2.2 Analysis and results
Firstly, the fiber dimensions are measured to make modelling of the the propagation in the fiber
possible. A clamp meter is used to measure the outer diameter of the fiber, which was found to
be 120 ± 2µm. The cross section of the fiber is then imaged with an optical microscope. The
image is shown in figure 6.7. Given the measurement of the outer diameter, the pitch and hole
diameter can be determined to be Λ = 8.1± 0.1µm and d = 3.6± 0.1µm.

The transmission was measured to be 9-15 % depending on the power – the transmission
was lowest for higher pump power. After measuring the transmission the fiber is aligned to
couple into the spectrometer, where the spectra can then be recorded.

The input peak power in the fiber is then estimated from the known pump power of the
source, the transmission and then accounting for Fresnel coupling loss and propagation loss.
The Fresnel coupling loss in the fiber end is 20 % [22], and the propagation loss is estimated
to be 5 dB/m at 1.93 µm wavelength based on loss data provided by the manufacturer – this
data will be shown in the next chapter. The fiber was measured to be 14.6 cm long, which gives
an expected loss of 0.8 dB during propagation. We will consider three different measurements
with average pump powers 95 mW, 550 mW and 790 mW. The associated peak powers were
then estimated to be 289 W, 1122 W and 1451 W based on the parameters above.

The laser source that was used is known to have some chirp [27], but the exact amount has
not been measured. Therefore, chirp was introduced in the modelling as a free parameter that
is also optimised upon. The chirp is added to the simulated input pulse in the following way [7]

A =
√
P sech(t/T0)e

i(C/2)t2/T 2
0 , (6.7)

where C is the free chirp parameter. The optima that were found tended to have values close
to C = 5. An optimisation without chirp has also been done and it will be referred to shortly.

Before considering the measurements and simulation results, the process of fitting will first
be described. As mentioned the optimisation algorithm employed varies the n2 parameter
until an optimal agreement is found between the measured and simulated result. An optimal
agreement is a minimum of an error function that we define to describe the difference between
the results. A straight-forward way to define the error function is via the l1 norm given by

E(Pexp, Psim) = ||Pexp(λ)− Psim(λ)||1
=

∑
i

|Pexp(λi)− Psim(λi)|, (6.8)

where Pexp|sim is the power spectral density (PSD) of the experimental result and simulation
result, respectively, and λi is a wavelength in a discretized grid that has been chosen appropri-
ately. The problem with this error function is that the optimisation will revolt around matching
peaks rather than the wings – SPM is charaterised by a spectral broadening, so the optimisation
should be more concerned about matching the general shape of the results. To reflect this we
define an alternative error function as

Eln(Pexp, Psim) = || ln [Pexp(λ)]− ln [Psim(λ)] ||1
=

∑
i

| ln [Pexp(λi)]− ln [Psim(λi)] |. (6.9)

We will use both error functions in the following to see how it affects the fitted value of n2, and
possibly average over those values if they turn out differently.
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Figure 6.8: Measurements and corresponding fits at three different levels of estimated peak power. Each
row of figures correspond to a certain power. First column of figures show the PSD during propagation
in the simulated fiber. Column two and three shown optimal fits to measured spectra based on errors
computed as logarithmic and linear deviation, respectively, resulting in two different but relatively close
values for n2 in each case.

One more non-trivial matter regarding the optimisation is about convergence. While there
are several measurements that ideally should be simultaneously fitted, the optimisation does not
converge well when minimising a sum of multiple error functions each describing different pairs
of measurement/simulation results. In other words if the objective function is too complex, the
algorithm converges very slowly, and when it does the solution is likely to be one out of many
local optima that do not fit any one of the pairs very well. Hence, the optimisation is applied to
each measurement separately, and therefore multiple values of n2 will be found; one describing
each measurement optimally. The final estimate on n2 is then taken to be the average of these
individual results.
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The measurements and simulation results are shown on figure 6.8, where each row of plots
correspond to a different power. The dashed lines in the two rightmost plots of each row is data
that has been filtered out when evaluating the error functions. There is very little SPM visible
for the uppermost case, where the average pump power is 289 W. The optimal n2 for both error
functions in this case are close to 2 · 10−18m2/W = 2nm2/W, but given the very low power
for this case, the n2 value could easily be 50 % larger without much more spectral broadening
being present – equivalently if the fitted value of n2 is kept at what it is found to be, and we
increase the peak power from 289 W to 400 W in the simulation, the end result does not differ
significantly. Therefore, the fitted value at low powers are bound to be rather uncertain and
should be considered with a bit of scepticism if not simply rejected. The two measurements at
higher power do show much more spectral broadening, and while a somewhat peculiar spectrum
is found in the measurement corresponding to the 1451 W peak power case, there seems to be
a consistent pattern in the fitted values of n2 with all being within 8 % of 3.5 nm2/W. The
two different definitions of the error functions also produce quite similar results. If we do not
include chirp, the error functions do not reach as low minima, and the fitted values are on
average close to 2.5 nm2/W with one value being above 3 nm2/W – the unchirped optima can
be seeen in app. B.

The peculiar central peaks in case of the measurement in the bottom of 6.8 is a cause of
concern regarding the quality of the laser. The laser could have significant relative intensity
noise (RIN), which could potentially produce pulses showing different levels of SPM and thus
different levels of broadening within the integration time of the spectrometer. Those pulses that
are broadened would be closer to the center wavelength, and so the fact that such central peaks
are observed even for high average power could be due to this noise source. However, if that was
the case, it seems unlikely that the central peaks would also be dominant in amplitude. Other
proposals could be that the pump wavelength or the mode-locking of the laser is unstable.

Rejecting the fitted values for the uppermost case in the figure, the average of the four
remaining fitted values give us the final result n2 = 3.5 nm2/W with a potential uncertainty of
as much as 1 nm2/W if we are conservative and entertain the thought that the rejected and/or
unchirped fitted values were actually accurate.

The final result does differ quite a lot from the manufacturer’s measured value at 1.55 µm.
The question is if this discrepancy can be explained by the almost 400 nm difference between
their measurement at 1.55 µm and our measurement at 1.93 µm. Consulting the literature shows
that quite significant drops can indeed happen for chalcogenide when increasing the wavelength,
although perhaps not enough to explain the discrepancy above. In [26] for instance, there are
comparisons of n2 measured at different wavelengths in other chalcogenide fibers, where the
more reliable z-scan technique has been used. The chalcogenide composition As40Se60 was
found to decrease from 18 to 10 nm2/W (55 % decrease) when the wavelength is increased
from 1064 nm to 1430 nm. A similar result was found for the composition Ge20As40Se40, which
decreases from 18.5 to 8.5 nm2/W (54 % decrease) with the same increase in wavelength. The
latter composition is presumably quite similar to the composition that have been measured
upon in this experiment, namely Ge10As22Se68, but whether a comparable decrease of as much
as 50 % is expected when increasing the wavelength another 400 nm is unknown.



CHAPTER 7
Supercontinuum generation in tapered

chalcogenide fibers
In this chapter we will study a tapered photonic crystal fiber (PCF) of the composition Ge10As22Se68.
The length of the sections of taper are shown in figure 7.1, while other dimension parameters
are presented in table 7.1. The values used are based on measurements performed on the same
taper in an experiment introduced shortly.

Before taper Down taper Waist Up ta
per

After taper

7.5 cm 3 cm

20 cm

3 cm 4 cm

Figure 7.1: Lengths of the parts of the tapered fiber that is simulated.

Table 7.1: Tapered fiber dimensions. The value for dcore and OD are only included for reference – these
parameters do not have a direct presence in the modelling.

dcore [µm] OD [µm] d [µm] Λ [µm] d/Λ

Before/after taper 15.1 176 5.10 10.08 0.51
Taper waist 5.9 67 1.89 3.91 0.48

All results presented in this chapter are ensemble averages over 10 simulations based on
the parameters stated above. The code of the solver that has been developed and used in the
project is presented in appendix C.

7.1 Discretizing a tapered fiber
In a segment of a fiber where tapering occurs, the continuous reduction of fiber dimensions will
cause the linear operator to have a z-dependence. The linear operator is computed in COMSOL
given specific fiber dimensions, but as this is a rather demanding computation, we cannot hope
to make a new computation of the fiber modes for every single step in the simulation of pulse
propagation, nor would it be very beneficial as the changes of fiber dimensions in a single step
are minute. The down and up taper sections tends to be 3 cm, and a propagation step in
simulations in this work is on the order of 10−5, corresponding to 3000 points in each of the
tapering sections with unique fiber modes.
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Hence, we have to partition the tapering sections into a more coarse grid of discretized
points allowing interpolation of only relatively few computed fiber modes. For a point z that is
between the two points s0 and s1 (referred to as nodes henceforth) for which the corresponding
fiber mode solutions have been computed, we choose to apply a linear interpolation given by

f(z) = (1− r)f(s0) + rf(s1), r =
z − s0
s1 − s0

(7.1)

where f is the quantity that is desired. In the case of solving the MM-GNLSE introduced earlier
the quantities to interpolate are the linear operator (propagation constant and confinement
attenuation), the overlap integrals and the shock time constants (provided the approximation
τ ≈ 1/ω0 is not applied).

The taper is partitioned into equally spaced nodes, but the question is now how many nodes
are needed to make the overall interpolation sufficiently accurate. The way we address this is by
considering the maximal interpolation error between two nodes in the taper, which is assumed
to be in the centre between the nodes. Examples of a taper discretized into either three and
five nodes is shown in figure 7.2(a), where the nodes have been used to interpolate the effective
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Figure 7.2: The two row of plots to the left show examples of discretizing the taper into either 2 and 4
intervals and the effective refractive indices at the position indicated by the red dashed lines, when using
solutions at the positions indicated by the green lines. To the right is shown a figure of how a convergence
test has been made, in which five different interpolants are computed corresponding to discretizing the
taper into 4, 8, 16, 32 and 64 intervals.
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Figure 7.3: Convergence of the in-
terpolation error when increasing the
number of nodes in the taper segments.
The interpolation error is taken to be
the maximal absolute error between
the interpolated refractive index and
a reference numerical solution.

refractive index shown to the right of the figure. The addition of two nodes reduces the distance
between nodes by a factor of 2, and is seen to reduce the maximal error of the interpolation
by a factor of 4. This is an indication of quadratic convergence rate. The error is found as
∥neff,interp −neff,ref∥, where neff,ref is a reference computation done at the same point (shown as
the green curves in the subplots to the right of figure 7.2(a)).

Generalising upon this we want to estimate the error when we instead have for instance 9,
17 and 33 nodes in the taper. Let a node referred to as i/N be a node that is in the beginning
of the ith interval, when the taper is partitioned into N equally sized intervals. The taper from
before with 3 nodes will then have node indices 0/2, 1/2 and 2/2. To estimate the generalised
interpolation error, we then calculate the error at the 1/64 node when interpolating between
the 0/64 and 2/64 nodes, and similarly at the 1/32, 1/16, 1/8 and 1/4 nodes when interpolating
between the 0/32 and 2/32, and so on. Notice that several nodes then coincide, e.g. the 1/64
and 2/32 nodes are at the same position in the taper. The positions that we interpolate and the
nodes used to interpolate are visualised in figure 7.2(b). The errors are determined as before
with reference computations at the same positions as the interpolants. The resulting errors
are shown on figure 7.3. The convergence rate, indicated in the figure legend, is found to be
quadratic as expected. Based on this information a minimum of 9 nodes should be employed
to ensure an accuracy in line with the tolerance used in simulations.

7.2 Optical properties along taper
To describe the refractive index of the material of the fiber modelled in COMSOL, the Sellmeier
equation is used

n2
mat(λ) = 1 +

∑
i=1

Bi

1− Ci/λ
,

{
B1 = 2.774, B2 = 2.892, B3 = 0.7320,

C1 = 0, C2 = 0.4047/106, C3 = 38.53/106
(7.2)

where the coefficients have been experimentally determined by the fiber manufacturer. With
the values in table 7.1, we now partition the down taper into 9 nodes, leading to 9 pairs of
pitch and hole diameters with different computed optical properties associated with each pair,
shown on figure 7.4 for the fundamental mode in the fiber. All values are found to be practically
identical between the two polarisations modes, hence the values can be assumed to apply to
both modes even if the ones shown here are based on the first polarisation mode. The values
of the pitch and hole diameters of each pair is shown in the figure legend where units of µm is
implied.
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From the dispersion plot, we see that the ZDW is about 5 µm before the taper, while getting
close to 3 µm in the waist. A second ZDW around 9 µm also apppears in the waist. As the
fiber core becomes smaller near the waist, it makes sense that the effective mode area is seen
to become smaller as well, resulting in higher nonlinearities in the down taper and waist due to
the inverse proportionality between Aeff and γ. However, the increased nonlinearities comes at
the price of higher attenuation as seen by the loss edges being shifted to shorter wavelengths
close to the waist. This is only slightly counteracted by the fact that the fraction of the mode
residing in the glass, and not the air holes of the PCF, becomes lower, referred to as glass
occupancy (denoted rglass), leading to a lower material loss, which has to be measured and will
be considered shortly. The net loss, or attenuation, is given by

α = αcon + rglassαmat, (7.3)

where αmat is the material loss and αcon is the confinement loss, which is the attenuation shown
in figure 7.4. The confinement loss at long wavelengths near and inside the waist is much greater
than the material loss, hence even when including rglass factor the net loss is still much larger
here than before and after the tapering.

The effective refractive indices are seen to only approximately coincide with the material
refractive index given by (7.2), and indicated by the black dashed line, at short wavelengths,
and for longer wavelengths they are overall significantly lower with the minimum being in the
waist.
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Figure 7.4: Dispersion, effective mode area, effective refractive index (for which the black dashed line
corresponds to the Sellmeier equation for the material), nonlinear coefficient, attenuation or confinement
loss, and a so-called glass occupancy defined to be the fraction of the mode that is within the glass and
not the air holes of the PCF.
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Figure 7.5: (a) Material loss of the considered chalcogenide fiber, measured in [28]. (b) Delayed Raman
response function, measured in [22], shown in time domain (top) and frequency domain (bottom) shown
with a reference analytical approximation, indicated by the dashed lines, given in [12]

As mentioned the material loss has to be measured, which has been done in [28], and the
measurement is shown in figure 7.5(a). Absorption by impurities appear clearly at wavelengths
of 2.9 µm, 4.6 µm, 6.3 µm and 7.8 µm, associated with O-H, Se-H, H-O-H and Ge-O absorption
[22], respectively. The loss was only reliably measured at wavelengths from around 2.4 µm to
9.7 µm, and since the spectral window used in the simulations surpasses this bandwidth, the
boundaries of the loss has been artificially extended, which can be seen as the sharp loss edges
at 2 µm and 10 µm.

On figure 7.5(b) the measured delayed Raman response is shown [22], both in time and
frequency domain, where an analytical approximation for a similar chalcogenide composition,
determined in [12], has been included as reference. The analytical approximation is of the form
given by 4.5 but with τ1 = 23.1 fs and τ2 = 195 fs. The analytical approximation is seen to
follow the measured Raman response relatively well with the main difference being that the
peaks in the frequency domain are Lorentzian shaped and do not feature a small dip as seen
in the measured data. The analytical approximation has only been tested in simulations, and
the results are nearly identical, so the differently shaped peaks are not of great significance.
The value of the fractional Raman contribution that we will tend to use is fR = 0.15, lower
than the value of fR = 0.18 often used for silica, but we will also consider a value as low as
fR = 0.09, which is found to produce similar results. In [12] the value fR = 0.115 is found for
a certain chalcogenide fiber, which was used as a starting point in our simulations and then
freely adjusted to fR = 0.15, as it remains unknown exactly what the correct value is for the
chalcogenide composition considered here.

7.3 Importance of fiber dimensions
Early in the project different taper waists were considered that mostly were based on pitch and
hole measurements in tapered chalcogenide fibers by [22], where three different pitch-to-hole
ratios occur; 0.51, 0.43 and 0.37.
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The motivation for investigating this was initially to be able to numerically design a tapered
fiber that would give rise to the experimentally observed nonlinear dynamics described shortly.
In particular it was believed that the presence of the second ZDW was the key to producing an
observed dip in the power spectral density at around 8 µm. Hence, being able to choose fiber

(a) ZDW with shortest wavelength.

(b) Second ZDW occurring at longer wavelength.

(c) 10 dB/m confinement loss edge in the long wavelength end.

Figure 7.6: Interpolated first ZDW (top), second ZDW (mid) and long wavelength 10 dB/m loss edge
(bottom) as functions of the taper dimensions; the pitch and hole diameter. The dashed lines indicate
how tapers with different hole-to-pitch ratios will vary along the down/up taper. The shaded regions
indicate parameters where no guided modes were found to exist.
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dimensions to provide a second ZDW at an exact position was originally of interest.
Having solved the wave equation for several taper waists and the corresponding discretized

down/up taper segments, the ZDW(s) could be determined and compiled into the grid shown
in figure 7.6(a) and 7.6(b), where the latter shows the second ZDW for the solutions that have
two ZDWs. The dashed lines indicate the direction of variation corresponding to different hole-
to-pitch ratios, of which the 0.51 line is most close to the simulations we shall consider later
in this chapter, where as noted in table 7.1 the hole-to-pitch ratio tends from 0.51 before the
tapering to 0.48 in the taper waist. As was also seen on figure 7.4, the ZDW tends to reduce
significantly along the down taper, eventually approaching ~3 µm in taper. In figure 7.4 only
two of the nodes were found to have second ZDWs, at ~9 and ~11 µm, but on figure 7.6(b)
we see that the second ZDW can get as low as 8 µm and as high as 13 µm depending on the
hole-to-pitch ratio.

However, when pushing the second ZDW into shorter wavelengths, say 8 µm, by choosing
fiber dimensions accordingly, the long wavelength loss edges will also shift, which turned out
to be so significant as to extinguish the dynamics above 8 µm. This loss dependency is shown
on figure 7.6(c), where the long wavelength 10 dB/m loss edge is seen to be shifted all the way
down to ~6 µm at parameters corresponding to a second ZDW at 8 µm. Meanwhile, the 10
dB/m loss edge for the 0.51 hole-to-pitch ratio is closer to 10, and thus does not extinguish the
dynamics around 8 µm observed experimentally.

7.4 Reference experiment
An experiment that we will use as a reference for the majority of SCG simulations in this chapter
is one conducted by Christian Rosenberg Petersen [22], in which a cut of the Ge10As22Se68
PCF similar to tapered fiber shown in figure 7.1 was pumped at different levels of power.
Christian shared the data collected in this experiment allowing detailed comparisons between
measurements and the simulation results in the following. The data from the experiment that
has been deemed most relevant for the purpose of comparison has been visualised in figure 7.7.

The SC is seen to gain a lot of bandwidth at 16 mW pump power and above. At over 100 mW
over pump power, the long wavelength part of the spectrum begins separating from the rest of
the SC, evident in the three top figures of 7.7(a) and the small empty spaces in the interpolated
plot in the top of figure 7.7(b). This separation is most clear for the highest used pump power of
190 mW, which in addition to having the broadest SC, features the most interesting dynamics
of the shown cases, and will therefore form the basis of what we will attempt to reproduce. The
spectrum corresponding to this pump power is enlarged in the bottom of figure 7.7(b).

7.5 Reproducing the experimental measurements
First and foremost the parameters that determine SC generation have to be carefully estimated.
Most importantly the power and the nonlinear refractive index, n2. What is decisive for the
SC dynamics is the product between the power and n2, and not so much the individual values.

Since we have previously estimated the value of n2 in the material, it seems appropriate
to reuse this estimation, even though it was found to be somewhat different than the manu-
facturer’s measured value. However, as stressed in the chapter describing this experiment the
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Figure 7.7: Experimental measurements of SC in a chalcogenide PCF. The annotations of the subplots
of figure (a) indicate the pump power used to generate the SC. The seven power levels shown in (a), and
four other spectra also in the interval between 1 mW to 190 mW, are all presented in the interpolated
plot of figure (b). The most interesting result to try to reproduce is the broadest SC corresponding to
the highest pump power, whose spectrum is enlarged in the bottom of (b).

value stated by the manufacturer was based on measurements at 1550 nm, whereas the experi-
ment conducted in this project was at longer wavelengths. Since n2 is expected to decrease for
increasing wavelength, it has been decided that the lower estimation of n2 is plausible, in fact
even more so because we now will simulate at wavelengths up to 12 µm with a pump laser at
4 µm, more than double the wavelength at which n2 was estimated in the experiment. Due to
this, the estimation of n2 at 3.5 · 10−18 m2/W is assumed now to have an even lower value of
2.5 · 10−18 m2/W, which will be used throughout this chapter. Again, the choice of n2 can be
compensated for by the simulated power, and since we will vary the power greatly, this specific
guess on n2 is not disruptive even if inaccurate.

As for the power, we can expect there to be Fresnel loss amounting to 19.5 % at both fibers
end [22], and due to both material and confinement attenuation as seen on figure 7.5(a) and
7.4, there is likely to be propagation loss of 6 dB/m or more. The fiber length that will be
simulated will span from 0.3 to 0.5 m, and so being conservative we estimate a propagation loss
at 3 dB, yielding an overall transmission of 33 %.

The pump laser used in the experiment generates Gaussian shaped pulses with TFWHM = 252
fs. It has a repetition rate of 21 MHz, and in case of the highest pump power of 190 mW being
used, this gives a peak power of 40 kW. Given the transmission above an estimate of the
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simulated peak power is about 13 kW. For this reason we will start by considering propagation
at this pump power, but later in the chapter we shall consider a larger range of pump powers,
similarly to how it was done in the experiment. What we will find is that 13 kW is actually
more than sufficient to see the characteristic dynamics observed in the experiment.

7.5.1 Attempting to reproduce with GNLSE
As a first attempt at reproducing the experimental result we will use the GNLSE (2.11) with
the addition of attenuation, eq. (7.3), along with all the data presented in 7.4, which implies
that we will let all quantities be frequency-dependent neff , Aeff (and thus γ) and α. However,
for now we will neglect the delayed Raman response function and set fR = 0.

The simulation results obtained from solving this modified GNLSE are shown on figure 7.8.
On the plot of the PSD during propagation several, the included guidelines represent: taper
nodes (horizontal white), 10 dB/m loss edges (vertical white), maximal GVD (green) and ZDWs
(red) – and they will be used as such in the rest of the chapter.

The measurement of the spectrum in the experimental reference of figure 7.7(b) corresponds
to the PSD at the fiber that shown in the top 7.8(c). While the agreement is not great for
wavelengths over 7 µm, we see that the spectrum near the pump wavelength agrees reasonably
well meaning that the estimated peak power of 13 kW seems to be appropriate.

The temporal evolution seen in figure 7.8(b) might at first sight seem a bit strange, especially
when hold up against corresponding plots in chapter 4. The reason for this is that the velocity
of the reference system has been chosen to be equal to the group velocity in the taper waist,
which is lower than before the tapering causing the delay to be negative initially. As mentioned
previously the velocity of the reference system can be chosen freely, and it would not affect
the spectral development if chosen differently, and therefore this liberty has been exploited to
minimise the overall delay allowing a smaller time window to be used, i.e. a smaller value of Nt

as defined in section 3.2.

7.5.2 Attempting to reproduce with simplified MM-GNLSE
Moving on from the GNLSE, we will now as a second attempt use the MM-GNLSE, thus
introducing the second polarisation mode, and again use all the frequency-dependent quantities
of figure 7.4 while still neglecting the delayed Raman response.

In the presence of two polarisation modes, a choice regarding the initial polarisation has to
be made, also referred to as polarisation seeding in the following. We can simply choose to have
all the power in mode 1, in a way corresponding to the previous GNLSE simulation, except for
the fact that the modes may now couple even if one of them has zero power initially. This is due
to the term A∗

l

[
(R · e2iω0τ ) ∗ (AmAn)

]
in (2.16), which can cause the nonlinear effect known as

four-wave mixing [13] giving rise to energy transfer between modes. Later in this chapter we
will consider an example, where the term is removed from the MM-GNLSE. The simulation
result for this case is seen on figure 7.9, in which the modes is indeed seen to couple. While
initially having zero power, mode 2 catches up after the strong nonlinearity in the taper waist
increases the rate of energy transfer greatly. This is also evident in figure 7.9(b), where the
photon number of mode 2 is practically zero initially1, but quickly approaches an equilibrium

1The non-zero value is due to numerical truncation errors accumulating when computing the photon number
integral.
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Figure 7.8: (a) PSD during propagation. (b) Time delay during propagation. (c) PSD at selected
positions in the fiber with the position in the topmost plot being the fiber end, where the computed PSD
is compared with the experimental reference, referred to as sim and exp respectively.

a bit into the taper waist.
For an initial condition where the modes equally share the initial peak power, the propa-

gation plots are instead as shown in figure 7.10. With the two modes being seeded identically,
and with the absence of delayed Raman, the differences in the PSD, figure 7.10(a), are subtle
but definitely visible upon closer inspection. The difference is more evident on figure 7.10(b),
in which the photon number of mode 2 is almost half that of mode 1 at ~13 cm, despite being
identical initially.

When comparing the PSD plots of figure 7.9 and 7.10 with those of the GNLSE in the
previous section, figure 7.8, it is clear that the spectral development is very similar; there are
no new dynamics suddenly emerging apart from the energy transfer between the modes, which
however does not appear to be reflected by substantial changes in the PSD spectra. Hence, a
combined PSD profile (i.e. the accumulated contributions from the modes) at the end of the
fiber looks virtually identical to the one shown in figure 7.8(c), which brings us no closer to
reproducing the experimental result. Common for all PSD plots seen so far it would appear
that the long wavelength loss edge at around 7 µm is an impenetrable barrier given that it
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Figure 7.9: PSD (a) and photon number (b) during propagation for two differently seeded polarisation
modes in the absence of delayed Raman response.
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Figure 7.10: PSD (a) and photon number (b) during propagation for two equally seeded polarisation
modes in the absence of delayed Raman response.

accurately coincides with the long wavelength edge of each supercontinuum.
As for the two different cases of initial polarisation seeding, we have not seen a significant

difference either in terms of the spectral development, but then we have also neglected delayed
Raman response so far.

7.5.3 Using full MM-GNLSE
Having simulated now the GNLSE and MM-GNLSE excluding the delayed Raman response,
it is now time to simulate the full MM-GNLSE. Not knowing what the polarisation was in the
experiment, we will assume that the polarisation modes have the same initial power, unless oth-
erwise specified, because it seems unlikely that the pulse should have been completely polarised
along one component in the experiment by chance.

Keeping all other parameters constant but now using the measured delayed Raman response
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with the fractional Raman contribution being fR = 0.15, the simulation results turn out com-
pletely different as seen in figure 7.11. We now see part of the pulse being redshifted through
the barrier posed by the loss edge, and continues to propagate with significant power all until
the fiber end. Furthermore, even with the similarly seeded modes, their PSD spectra are now
quite distinct with mode 2 containing most of the spectral component that pierces through the
loss edge, and mode 1 containing another spectral component that is also redshifted and is close
to the loss edge.

Figure 7.11: PSD during propagation of the respective modes when using the full MM-GNLSE.

The corresponding temporal development is seen in figure 7.12(a), where multiple compo-
nents of the pulse can likewise be seen to separate from the rest of the pulse to wander off so
to speak into increasing time delay. This spectral and temporal behaviour is reminiscent of
some of the soliton dynamics that was explored in chapter 4. Hence, one might at this point
hypothesise that what is seen here is indeed solitons. An investigation of this hypothesis will be
undetaken shortly – first we will consider other characteristics of the new spectral development
and how well it agrees with the experimental reference.
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Figure 7.12: (a) Power in the time domain during propagation for the two polarisation modes. The
time delay is defined with respect to the group velocity in the taper waist (which begins at 10 cm and
ends at 30 cm). This is why the pulse moves faster than the reference frame initially and after the taper.
(b) The photon number of the two modes during propagation.

During propagation the modes are seen to couple strongly with each other as evidenced by
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the oscillating photon number in figure 7.12(b). The photon numbers of the modes do not quite
reach an equilibrium, but they do end up relatively close with under 20 % difference. The PSD
spectra at the fiber end do on the other hand end up quite distinct as shown on the left side
of figure 7.13. Here the peak at 8+ µm is seen to be broader and higher for mode 2 than for
mode 1, which was also observed in figure 7.11 as well as the high peak in mode 1 at µm ~7
µm, which remarkably has no clear presence in mode 2.
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Figure 7.13: Comparisons of the PSD at the fiber end between the two polarisation modes (left) and
between the combined PSD of the two modes and the reference experiment (right).

The combined PSD of the two modes is shown on the right side of figure 7.13 together with
the experimental reference, and the agreement is seen to now be at an entirely different level of
detail with three peaks at 6 µm, 7 µm and 8+ µm being present in both curves. The peaks at
6 µm and 7 µm do not coincide exactly with the experimental reference, but the dip at 6.5 µm
certainly does, while the dip at 8 µm and the peak at 8+ µm also coincide very closely, with
the latter being so close that the wavelength of the peaks only deviates by ~1 %. One thing
that differs somewhat between the simulation and experimental result is the long wavelength
edge, which will be addressed after the next section.

7.5.3.1 Analysing the spectrogram
We now return to the hypothesis that the spectral development corresponds to soliton dynamics.
A way to investigate this is by using the spectrogram defined by (2.28). The spectrogram for
the full MM-GNLSE simulation at five different positions is shown on figure 7.14(a) with the
corresponding PSD spectra in figure 7.14(b).

The soliton numbers N =
√

γP0T 2
0 /|β2|, indicated on the figure, have been estimated from

the spectrogram along with a time domain plot of the power making it possible to read off the
full-width half max (FWHM) of the peaks that are suspected to be solitons and will be referred
to as such. The FWHM is then divided by 2 arccos(

√
2) ≈ 1.76 to give the pulse width T0. The

value for β2 is found from the propagation constant at the corresponding position in the fiber
(i.e. the taper waist in both cases) using a finite difference approximation and interpolation to
get the value at the wavelength indicated on the spectrogram. The power is found by integrating
the power in the time domain in an interval that sufficiently encompasses the soliton pulse, which
yields an energy that is converted to a power by division with the already estimated pulse width.
Finally, the nonlinear coefficient is estimated using the definition γ = n2ω0/(cAeff). However,
we note that Aeff is not completely well-defined in the current context, because the soliton is
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Figure 7.14: Spectrogram (a) and PSD (b) at five different position along the fiber, where z = 37 cm
is at the fiber end after the tapering, 7 cm is before the tapering and the three other positions are inside
the taper waist. DW refers to dispersive waves, and N is the soliton numbers.

present in both polarisation modes and there are multiple overlap integrals between the modes,
hence the ambiguity. However, the approximation Q

(1)
1111(ω) ≈ n2

0/
[
3n2

eff(ω)Aeff(ω)
]

is used,
which is true when there only is a single polarisation mode propagating with a real-valued
mode function [13]. Due to this last uncertainty, the noted values for N are only suggestive.

As seen in chapter 4 fundamental solitions generated from solition fission may be accom-
panied by dispersive waves. This appears to be the case in figure 7.14(a), where the suspected
dispersive waves are indicated by the acronym DW.

The soliton numbers are overall close to 1, supporting the idea that they are fundamental
solitons. The values tend to be consistent through the fiber, as we see no large changes at
the four different positions in the figure. Furthermore the soliton number for solitons above 6
µm seem to be a bit higher than the rest, which might indicate that the shortcomings of the
approximation regarding Aeff are more pronounced at longer wavelengths.

The estimated values for the parameters γ, P0, T0 and β2 for all the annotated solitons
on figure 7.14(a) are listed in app. D, but two examples will be given here. For comparison
purposes we will consider the large soliton already present at z = 15 cm at around λ = 8, and
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the smaller soliton that only starts to become present after z = 30 cm at around λ = 5.5 µm.
For the large soliton at z = 15 cm, which is in the taper waist, the parameters were found to be
P = 5.29 kW, β2 = −0.89 ps2/m, TFWHM = 0.08 ps, Aeff = 35µm2 yielding γ = 0.19 (Wm)−1

and N = 2.03. For the small soliton at z = 37 cm, which is after the taper, the parameters
were found to be P = 0.35 kW, β2 = −0.56 ps2/m, TFWHM = 0.22 ps, Aeff = 120µm2 yielding
γ = 0.06 (Wm)−1 and N = 0.98. The higher (lower) value of Aeff (γ) is not so much due
wavelength dependency but rather that the after taper compared to the waist has much lower
nonlinearity as seen previously in figure 7.4.

While there is more than a factor of 10 between the powers of those two solitons, the rest of
the parameters are such that the soliton number only deviate by a factor of 2. The pulse width
of the smaller soliton is a couple of times larger, which is likely due to higher-order dispersion
whose effect is more pronounced the longer the fiber – the pulse width of the large soliton at
z = 37 cm has gone up to 0.6 ps for instance.

Finally, an observation regarding figure 7.14(b) is that the long wavelength edge is seen to
extend further at 15 and 22 cm, also evident on figure 7.11, but due to confinement loss the
long wavelength SC tail is attenuated as the pulse approaches the fiber end at z = 37 cm ending
up with a shorter tail than the experimental reference as seen in figure 7.13. This discrepancy
will now be addressed.

7.5.4 Matching the long wavelength loss edge
Now that it has been shown that the essential dynamics of the SC generation can be reproduced
numerically, we can study some of the more minute differences with the experiment. One such
difference is in the boundaries of the SC, especially the long wavelength end of the spectrum.
The numerical results from modelling the fiber that was shown in figure 7.4, makes it clear that
there tends to be sharp loss edges above 8 µm. By comparison with the experiment, it does
seem that those computed loss edges may be a bit too sharp. We will now investigate whether
artificially reduced confinement loss, corresponding to shifted loss edges, might lead to better
agreement in terms of boundaries while retaining the overall dynamics of the SC generation.

Figure 7.15: PSD during propagation (a) and at fiber end (b) when reducing confinement loss by a
factor of 0.4.

We reduce the attenuation coefficient in the following way α = kαcon + rglassαmat with k
being a number between 0 and 1. This way only the confinement loss is altered, such that
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only the long wavelength part of the SC is affected, and not the short wavelength part that is
dominated by the material loss. Different values of k has been tried, but it was found that values
lower than 0.2 leads to an unrealistic extension of the SC into 11+ µm territory. An example of
a simulation with k = 0.4 is shown on figure 7.15. The long wavelength edge is certainly further
into the infrared with the rightmost soliton peak surpassing that of the experimental result. At
the same time this soliton is shifted to 9+ µm wavelength, which does not agree as good with
the experiment as before, nor does the central part of the spectrum from 4-7 µm, but still this
goes to show that an inaccurate confinement loss from the fiber modelling may give rise to the
observed deviation of the long wavelength edges.

Figure 7.16: PSD during propagation (a) and at fiber end (b) when shortening the fiber waist by 5
cm.

Another parameter that influences the long wavelength loss edge is the taper waist length.
Since the attenuation is very strong in the taper waist, a shorter waist length can also push the
long wavelength edge further out. Naturally, the waist must not be so short as to inhibit the
development of the SC, but based on previous propagation plots, we can easily cut 5 cm off the
waist and still provide enough room for the SC development. As we have previously simulated
a 20 cm waist, we will now consider propagation in a 15 cm waist instead of decreasing the
attenuation coefficient as above. The PSD during propagation can be seen on the left in figure
7.16, and the comparison with the experiment on the right. From both of those figures it is
clear that the long wavelength edge has been increased, and that this part of the spectrum is
now in better agreement with the experiment, while the central spectrum is arguably in worse
agreement than before. Note that a waist of 15 cm is still within the uncertainty of the measured
length [22], but there is no justification for reducing it further, nor does it seem likely that it
would improve agreement with the experiment anywhere but for the long wavelength.

Finally it is worth noting that the power can of course also be increased to push the long
wavelength edge further, but this will change the rest of the spectrum very significantly as we
shall see soon.

7.6 Dependence on power
We shall now see what happens, when the power is varied through a large range of values. In
the experimental reference the pump power was varied from from around 1 mW to 190 mW,
which based on the losses and laser properties mentioned earlier is estimated to correspond to
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a range of pulse peak power from 80 W to around 16 kW. We will extend this range up to 22
kW, after which nothing particularly interesting have been found to happen.
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Figure 7.17: Variation of the peak power with other parameters kept constant at the values corre-
sponding to the reference experiment that agrees best with the simulation for 13 kW peak power.

On figure 7.17 the spectra in the fiber end for six different peak powers are shown. For 5 kW
the first soliton starts to redshift away from the rest of the pulse. The soliton redshifts further
and gradually broadens as the power is increased up to 9.6 kW, where the second soliton starts
to appear. The first soliton narrows from this point on, when increasing the power, while the
second and third soliton catches up as seen in the 13 kW plot, the power at which the best
agreement to the experimental result was found. For 16 kW the first soliton has less power
compared to previous cases, presumably because it is redshifted so far into the long wavelength
loss edge that the attenuation makes a clear mark. It is also possibly that the remaining pulse
starts absorbing the soliton. This is behaviour is even more evident for 22 kW, where only the
soliton peak tops are visible.

Figure 7.18: Interpolated PSD for 26 different values of average pump power on a linear (logarithmic)
second axis to the left (right). The values for the average pump power are estimated based on expected
losses and the properties of the laser used in the reference experiment.

Figure 7.18 features two visualisations of the end spectra for 26 different powers, the first
of which has a linear axis of the pump power and the other one a log axis. The pump power
is stated here rather than the peak power to make it comparable to the similar visualisation of
the experimental measurement in figure 7.7(b) – the corresponding high end of peak powers are
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similar to those on figure 7.17. On those two figures the gradual redshift of the first soliton is
very clear with the peak’s position moving along a tilted line into longer wavelengths leaving an
empty space between it and the rest of the pulse. As was also seen on figure 7.17, the ultimate
demise of the soliton at high powers is also clear, as we now see what almost looks like a collision
with the strong loss edge at 9+ µm. At pump powers over 150 mW, the SC becomes so broad
that it fills the empty space between 6-8 µm.

7.7 Sensitivity to important parameters
In this section we will see how the SC dynamics are influenced by changes to selected parameters
that are identified to be important. It will not be a deep analysis but rather some examples of
SC generated with different parameters that all lie within the uncertainty that is inherent to
the parameter estimation in the first place.

The sensitivity to small changes in fiber lengths is overall not significant and not studied
further. Down and up tapers as much as 2 cm longer or 1 cm shorter have been tried, and the
results are very similar. The waist length has some importance, because the loss is relatively
much higher, and therefore having a longer waist will reduce the long wavelength edge, as we
have already seen. However, besides attenuation it is not a critical parameter, for instance a
waist of 25 cm rather than 20 cm was found to produce very similar results, as well will a
15 cm waist. Of course a large reduction in the waist length will be detrimental to the SC
generation, because the SC dynamics is still seen to develop within the first 10 cm of the waist
in the previous propagation plots. The after taper length has very little importance, because
both the loss and nonlinearity is relatively much smaller than in the waist, and therefore the
pulse will essentially retain whatever form it had after the up taper. The before taper section
is only influential on results if it is so long that the pulse power will have lost enough energy
that the soliton fission does not happen. It does not matter if it is made a bit shorter though,
because SPM will continue to happen in the waist until the rest of the dynamics follow.

Figure 7.19: PSD during propagation (left) and at fiber end (right) when reducing the fractional
Raman contribution from fR = 0.15 to fR = 0.09.
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7.7.1 Fractional Raman contribution
We will now consider an example, where the fractional Raman contribution is almost halved
by decreasing the value to fR = 0.09. The results presented so far have either had no delayed
Raman response at all, i.e. fR = 0, or have been based on fR = 0.15. Keeping all other
parameters as before, the decreased value of fR leads to the simulation results shown in figure
7.19. It is clear that the Raman redshift of the longest wavelength soliton is now less pronounced,
but is however still clear, especially when considering the PSD curve at the end of the fiber to
the right of figure 7.19, where a clear dip now occurs as ~7 µm rather than 8 µm. The second
and third solitons are only slightly visible. With the less prominent redshift, the SC is overall
more narrow, and clearly does not agree very well with the experimental, but even so the same
dynamics must be said to still be visible as opposed to the case of no Raman at all, figure 7.10.

7.7.2 Initial polarisation seeding
The simulation results that have been presented so far have primarily been based on an initial
condition with both polarisation modes having the same power, referred to as a 50/50 initial
condition. We will now consider the other extreme, namely a 100/0 initial condition, i.e. when
a single polarisation mode has all the power, to see whether the found agreement between
simulation and experiment also applies to other initial conditions. The 100/0 initial condition
gives rise to the simulation results shown in figure 7.20, where only the PSD of the second mode
has been shown during propagation to emphasise the new initial condition, and because the
PSD of mode 1 looks almost identical to the one shown on figure 7.11. Due to FWM, the energy
transfer to mode 2 makes its associated PSD visible shortly into the taper waist – as with the
other PSD plots the dB scales ranges from -40 to 0 dB, and therefore the PSD is at least 10−4

smaller in the beginning of the taper waist compared to the middle of it. The energy transfer
between the modes is very similar to the one seen in figure 7.9, where an equilibrium is almost
reached near the fiber end.

Figure 7.20: PSD during propagation of mode 2 (left) and PSD at fiber end (right) upon changing the
initial condition of the polarisation modes from 50/50 to 100/0.

Interestingly, the PSD of mode 2 only shows the soliton referred to previously as the second
soliton occurring at ~7 µm, and does not have the so-called first soliton that appeared at 8+
µm before. The 8+ µm soliton is however very clear in mode 1, which is evidenced by the
combined PSD (mode 1 + 2) to the right of figure 7.20. When considering the combined PSD,
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the agreement with the experiment is still very good qualitatively, and therefore we conclude
that the initial condition is not crucial to reproducing the experimental results.

7.7.3 Fiber dimensions
Now we will consider what happens if the pitch and hole diameter in the taper waist are a bit
smaller, but the hole-to-pitch ratio remains the same. All other parameters are kept the same.
The pitch is reduced by 0.1 µm, from 3.91 to 3.81 µm, while the hole diameter is reduced 0.06
µm, from 1.89 to 1.83 µm, yielding a hole-to-pitch ratio that is unchanged. Different hole-to-
pitch ratios have also been tested, but the consequence of changing the hole-to-pitch ratio in
the waist is mainly characterised by shifting the loss edges as discussed in section 7.3.

The simulation results that follow from the changed fiber dimensions are shown on figure
7.21. At the plot to the left in figure 7.21 the long wavelength loss edge can be seen to be just
slightly shifted towards shorter wavelengths, which is presumably what causes the 8+ µm soliton
to be a bit narrower and less redshifted compared to before as seen to the right of figure 7.21.
The second soliton occurring at 7 µm is seen to now agree remarkably well with the experiment,
although this is likely just a coincidence given that the rest of the spectrum does not agree very
well. Although the dynamics largely being the same as before, a significant difference is seen,
and based on this it might have been worthwhile to investigate fiber dimensions just a bit larger
instead of smaller as it could possibly lead to a matching of the long wavelength edge of the SC
to the experiment similarly to what was achieved by other means in section 7.5.4.

Figure 7.21: PSD during propagation (left) and at fiber end (right) when reducing the pitch and hole
diameter of the PCF by 0.1 and 0.06 µm, respectively.

7.8 Variations of the MM-GNLSE
In this section we will consider the consequences of two modifications to the MM-GNLSE. Simi-
larly to the sensitivity analysis of the parameters, the purpose is here to investigate whether the
found agreement with the experimental reference is peculiar to the particular form of the MM-
GNLSE that has been used or if the associated dynamics are more general. The investigation
is not thorough as we will just consider an example of each modification.
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7.8.1 Excluding four-wave mixing
First we will consider what happens when there is no four-wave mixing in the MM-GNLSE.
Of course we could just completely remove the Q

(2)
plmn term in the MM-GNLSE, equation

(2.16), and another modification with the same effect is to change the conjugations of the
field envelopes in this term to reflect the Q

(1)
plmn term, i.e. from A∗

l

[
(R · e2iω0τ ) ∗ (AmAn)

]
into

Al

[
(R · e2iω0τ ) ∗ (AmA∗

n)
]
.

The consequence of this change is that the polarisation modes are now energy conserving
individually [13], and for that reason if we use the initial condition that the polarisation start
is 100 % aligned with mode 1, then there will be no development in mode 2 under propagation.
This is shown on figure 7.22.

The dB scale on the mode 2 plot is relative to the initial PSD of mode 1, but it ranges all
the way from -100 to 0, nearly three times greater range than for other figures featuring dB
scales in the thesis. Even so, we hardly see any development during propagation, which is also
clear on the photon number plot that shows a difference of 8 orders of magnitude. The non-
zero photon number of mode 2 can be ascribed to numerical truncation errors that accumulate
when computing the photon number integral. While this must definitely be the reason for the
non-zero photon number initially in the fiber, given the initial condition, there appears to be
slight increase after 10 cm of propagation. Whether this is due to an extremely weak energy
transfer, perhaps resulting from the shock term, is unknown, but it does seem more likely that
the accumulation of numerical errors becomes more significant in the taper waist at 10 cm.
Nonetheless, this case goes to illustrate that energy transfer is effectively zero without FWM.
The spectral development in mode 1 does show the same dynamics as when FWM is present
however, but evidently when using the same parameters as before, the agreement with the
experiment is worse as seen to the right of figure 7.22.

Figure 7.22: Left and top-mid plot show the PSD of the respective modes. Due to the initial condition
and the absence of FWM, the inter-mode energy transfer is not in effect, rendering mode 2 idle during
propagation, which is also seen by the 8 orders of magnitude lower photon number, abbreviated PN , in
the bottom-mid plot. The plot to the right shows a worse agreement with the experiment.

7.8.2 Including higher-order shock terms
We will now briefly consider the effect of including the higher-order contribution of the τ

(1,2)
plmn

terms in the MM-GNLSE, which in the case of simulating two polarisation modes gives rise to
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32 separate shock time constants. Upon computation it is confirmed that 1/ω0 is indeed the
dominant term, and therefore it should be no surprise that the previously seen dynamics are
still present when simulating the propagation – see left side of figure 7.23. In this simulation
the two modes were seeded equally initially, and since the spectral development are similar for
the modes, only the total PSD is plotted in the figure. While the left side of figure 7.23 shows
no new dynamics, the long wavelength soliton is now less redshifted, which is also evident when
considering the PSD curve at the end fiber shown in the right side of figure 7.23, where the
PSD found when using the approximation τ

(1,2)
plmn = 1/ω0 has been included for comparison.
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Figure 7.23: PSD during propagation (a) and at fiber end (b) when including higher-order shock terms.

The shock term is often associated with an effect known as self-steepening [7], in which the
group velocity is intensity-dependent. This causes the group velocity in the pulse peak to be
lower than in the wings resulting in a distortion, where the time delay of the peak increases
towards the trailing edge, which is seen as a steepening in the time domain. Self-steepening is
expected to occur both with and without the approximation, but it is less prevalent when not
using the approximation, which is clear when plotting the SC in the time domain at the end of
the fiber as seen on figure 7.24, where the red curve is more steep in the trailing edge.

Figure 7.24: The curve for the simu-
lation result where the τ = 1/ω0 ap-
proximation was used shows a more
significant self-steepening indicating
the the higher-order terms of τ cause
the overall shock time constants to de-
crease in value.

Even if the higher-order shock terms do seem to be of some importance, there are various
proposals as to how they should be modelled [7, 2, 13, 15], and this diversity has spawned a bit
of uncertainty towards including them, which is why the simpler model with the approximation



7.8 Variations of the MM-GNLSE 59

τ
(1,2)
plmn = ω0 has been preferred and is used through-out the thesis. It is worth pointing out that

while the right side plot of figure 7.23 may suggest that a better agreement between experiment
and simulation is found when not including the shock terms, there may definitely exist a set
of the uncertain and important parameters that will give an equally good agreement – those
parameters include the power, the fractional Raman contribution and taper dimensions.



CHAPTER 8
Conclusion

The topic of supercontinuum (SC) generation has been studied from many sides. From a
modelling and numerical perspective, the problem of describing and simulating SC generation
has been addressed all the way from modelling photonic crystal fibers (PCF) by solving the
wave equation with COMSOL to designing numerical integration schemes that efficiently solve
the nonlinear propagation equations, such as the GNLSE and, its extension, the MM-GNLSE.

Chalcogenide fibers of the composition Ge10As22Se68 have been studied both experimentally
and numerically. Two experiments have been conducted with the chalcogenide fiber each one
with the purpose of determining a parameter either to be compared to or used in the modelling.
The first of those experiments dealt with the dispersion in the fiber. An interferometry based
method, inspired by [25], featuring a supercontinuum laser source was used to record interference
fringes from which the dispersion can be derived by fitting to a variant of Cauchy’s equation
using a least squares method. The process was repeated several times, each time with a slight
modification to the setup that would shift the interference fringes and produce a new fit of
the dispersion. Upon taking the average of all such obtained fits, the final estimation of the
dispersion was then compared to predictions from modelling. Those predictions were computed
by solving the wave equation with COMSOL based on measurements of the chalcogenide PCF
dimensions by microscope. The averaged dispersion fit from the experiment was found to be
completely within the uncertainty of the numerical modelling that stem from the uncertainty of
the fiber dimensions measurement. This agreement is taken to be a validation of the numerical
modelling, which can then be trusted to provide accurate results when simulating variants of
the same chalcogenide PCF with different dimensions as in tapered fiber simulations described
shortly. A direct measurement of the ZDW was not possible as it happened to be outside the
bandwidth of the SC source used, but based on extrapolation from the dispersion fit, the ZDW
was found to be within ~2 % of the numerical prediction.

In the other experiment the self-phase modulation (SPM) in the fiber was recorded in an
attempt to estimate the nonlinear refractive index, n2, of the chalcogenide composition by
fitting with a numerical simulation using n2 as a free parameter, while other parameters being
estimated as accurately as possible. The resulting value for n2 at a wavelength of 1.93 µm was
found to be 3.5 ·10−18m2/W. The value of n2 provided by the fiber manufacturer, SelenOptics,
is 8.8 · 10−18m2/W at 1.55 µm, and while the value found in the experiment is significantly
lower, reductions of over 50 % has also been found for multiple other chalcogenide compositions
when increasing the wavelength from 1064 nm to 1430 [26]. Hence, even with the considerable
uncertainty of our estimation due to the nature of the approach, the value may in fact be
plausible, and so it has been used for the simulations of the chalcogenide performed in the
latter part of the thesis.

Those simulations have formed the main focus of the thesis with the chapters on modelling,
numerical analysis and the experiments having provided a foundation for simulating multimode
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pulse propagation in tapered fibers that is validated, tested and shown to be convergent1 as
well as optimised to perform superiorly compared to other methods. This optimised method,
referred to as the DPIP method, has been developed during the project drawing inspiration from
the RK4IP method in [18] but shown to eclipse the RK4IP method in terms of convergence rate
and computational efficiency.

The simulations of multimode pulse propagation in tapered fibers revolved around the
chalcogenide fibers measured upon in the experiment. Tapered version of these fibers are stud-
ied in an experiment [22], where broad mid-IR SC is generated by pumping with high average
power. The parameters used in this experiment have formed the basis on which all tapered
fiber SC generation simulations have been made in an attempt to reproduce the findings of the
experiment. When using the MM-GNLSE proposed in [13] with two polarisation modes, and all
parameters as in the experiment, the simulation predicts the formation of multiple redshifted
fundamental solitons – that have have been confirmed to be solitons through an analysis of the
spectrogram at different positions in the fiber revealing that the soliton numbers are relatively
close to 1 and do not change significantly during propagation. The peaks of those solitons as
well as the dips between them coincide very well with the observed peaks and dips of the ex-
perimental reference, which implies with considerable certainty that the spectral development
seen in the experiment is in fact due to soliton dynamics.

1All steps in the chain of numerical problems that are necessary to solve in order to simulate propagation in
tapered fibers have been shown to be convergent: the numerical modelling of the fiber, the numerical integration
scheme employed to solve the propagation equation, and the discretization of the tapered fiber.



APPENDIX A
The DPIP method

The DPIP (Dormand-Prince Interaction Picture) method is based on the Dormand-Prince
Runge-Kutta scheme defined by the so-called Butcher tableau shown in table A.1.

A transformation similar to the one shown for the RK4IP method is used, but not the
separation distance is a full step size rather than a half, i.e. z′ = z + h. The reason that
this choice is advantageous is due to the sixth and seventh stage being evaluated here (shown
in the Butcher tableau as the two rows with a coefficient of 1 in the first column), where the
interaction and normal picture will coincide and thus save FFTs by eliminating the need of
transformations for these stages.

The first row of coefficients below the horizontal line in table A.1 gives the fifth order
solution, and the second row gives the alternative fourth order solution. The embedded error
estimate is then given by the absolute difference of the two solutions.

Table A.1: Butcher tableau of the Dormand-Prince integration scheme

0
1/5 1/5
3/10 3/40 9/40
4/5 44/45 -56/15 32/9
8/9 19372/6561 -25360/2187 6448/6561 -212/729
1 9017/3168 -355/33 46732/5247 49/176 -5103/18656
1 35/384 0 500/1113 125/192 -2187/6784 11/84

35/384 0 500/1113 125/192 -2187/6784 11/84 0
5179/57600 0 7571/16695 393/640 −92097/339200 187/2100 1/40



APPENDIX B
Unchirped SPM fits

The unchirped fits from the SPM experiment is shown in figure B.1.

Figure B.1: Optimal fits for SPM measurement assuming unchirped pump laser pulses. The deviation
between fit and measurement, both logarithmically and linearly, is larger than when assuming chirped
pulses, and the resulting value of n2 is lower – further away from the expected value.



APPENDIX C
Implementation of MM-GNLSE solver

The implementation has been made in Matlab due to its excellent balance between performance
and high-level programming. A smaller C++ implementation was also developed and although
its speedup was significant, a factor of 2-3 using a parallel implementation of the FFT (the
library FFTW), the increased development time and more messy code ultimately made Matlab
the preferred option.

The solver is conveniently partitioned into different logical parts, of which the most es-
sential ones are shown in this appendix, namely CCS_Main.m, CCS_Param.m, CCS_Fiber.m,
CCS_GetCOMSOLData.m and CCS_Integrator – functions for plotting and postprocessing have
been omitted. The overall logic of the implementation is contained in CCS_Main.m, which calls
the above functions – see listing C.1. Every piece of input is contained in ,CCS_Param.m, a
file that can be copied into a subfolder for every batch job (was done automatically via a bash
script) to allow for simultaneous computations with different configurations, see listing C.2.

The fiber configuration that is simulated is described by the function CCS_Fiber.m, shown in
listing C.3. Based on this fiber configuration, save files from COMSOL are loaded and processed
into appropriate data structures in the function CCS_GetCOMSOLData.m, see listing C.4.

Finally, the most interesting function is CCS_Integrator.m, which solves the MM-GNLSE
propagation equation – the associated code is shown in listing C.5.

Listing C.1: Content of CCS_Main.m.
%% Init
CCS_Param

%% Fiber init
5 [ztarget,taper_zlist,COMSOL_Filenames] = CCS_Fiber(FiberType,rend);

%% Preprocessing
[D_c,Q_c,gsTerms,taus] = CCS_GetCOMSOLData(P,COMSOL_Filenames,LossFile);
P.gsTerms = gsTerms;

10 P.taus = taus;

%% Processing
zlist = linspace(0,ztarget,P.Nz);
[Z,ATZ_p,ext] = CCS_Integrator(P,(A),zlist,taper_zlist,D_c,Q_c,opt);

Listing C.2: Content of CCS_Param.m
%% Discretization
P = struct();
P.Nt=2^15; % Number of time steps, 2^N makes fft faster
P.dt=4.84e-15; % Time step [s], note dt>pi/w0 to avoid negative frequencies

5 P.Nz = 200; % Save points

%% Physical constants
P.c = 299792458; % Speed of light [m/s]
P.eps0=8.854*10^(-12); % Vacuum permittivity [F/m] (for Q1 and Q2)

10 hbar=1.0545718*10^(-34); % Planck Constant [m^2*kg/s] (for noise)

%% Data structures
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P.T=((-P.Nt/2:P.Nt/2-1)*P.dt).';
P.V=2*pi*(-P.Nt/2:P.Nt/2-1)'/(P.Nt*P.dt);

15 P.Vshift = fftshift(P.V);
P.dV = P.V(2)-P.V(1);

%% Functions
20 P.fftc = @(TD) (ifft((TD)))*fscale;

P.ifftc = @(FD) (fft((FD)))*iscale;
P.fftscale = P.Nt*P.dt;

%% Fiber/laser parameters
25 P.wpump = 2*pi*P.c/4e-6; % Pump angular freq. [s^-1]

P.w0 = 2*pi*P.c/2350e-9; % Expansion angular freq. [s^-1]
power=5600; % Pulse peak power [W]

t0 = 0.212e-12; % Pulse width [s]
30 P.n2 = 2.5e-18; % Nonlinear refractive index [m^2/W]

P.Nmodes = 2;
rend = 0.48; % Taper profile (for Fiber function)
FiberType = 'smallBTAT'; % Taper length configuration
% FiberType = [0.075 0.03 0.2 0.03 0.04]; % alternative def.

35
% Raman (showing analytical approximation here as an example)
P.fr = 0.15;
tau1 = 23.1e-15; tau2 = 195e-15;
P.RT = (tau1^2+tau2^2)/tau1/tau2^2*exp(-P.T/tau2).*sin(P.T/tau1);

40 P.RT(P.T<0) = 0; % Heaviside step function
P.RT=P.RT/trapz(P.T,P.RT); % Normalise
P.RW = (3/2*P.fr*P.fftc(fftshift(P.RT))); % Frequency domain Raman, included factor 3/2*fr

for numerical efficiency
P.RWexp = (3/2*P.fr*P.fftc(fftshift(P.RT.*exp(2*1i*P.w0*P.T)))); % Raman for Q2 term in MM-

GNLSE

45 % Loss file
LossFile = 'ParameterData/LossData_Chalc_WithExpExtension_v2';
P.alphaCoeffA = 1; % artificial scale of confinement loss
P.alphaCoeffB = 1; % artificial scale of material loss

50 % gamma and shock term data structures
P.useAllShockTerms = 0; % whether to use tau_plmn
P.gsTerm = cell(1); % gs = gamma & shock, modified in GetCOMSOLData function
P.tau = cell(1); % shock time constants, modified in GetCOMSOLData function
P.gsCoeff = 0; % whether to include higher order shock terms when useAllShockTerms =

0
55

% Should Q overlap integrals be continuous? Akin to mode profile dispersion
P.MPD = 1;

%% Input pulse
60 Mode1Seed = 0.50; % Initial power fraction of mode 1

A=zeros(P.Nt*P.Nmodes,1);
if P.Nmodes > 1

A(1:P.Nt)=sqrt(Mode1Seed*power)*exp(-P.T.^2/t0^2).*exp(-1i*(P.wpump-P.w0)*P.T); % Chirp
65 A(P.Nt+1:end)=sqrt((1-Mode1Seed)*power)*exp(-P.T.^2/t0^2).*exp(-1i*(P.wpump-P.w0)*P.T); %

Chirp
else

A(1:P.Nt)=sqrt(power)*exp(-P.T.^2/t0^2).*exp(-1i*(P.wpump-P.w0)*P.T); % Chirp
end

70 % One photon per mode noise
if exist('ArrayID','var'), rng(ArrayID,'Twister'); end % for ensemble averaging in batch

processing
RandNoise=exp(1i*rand(length(P.V)*P.Nmodes,1)*2*pi)...

.*sqrt(1/P.dV*hbar*repmat((P.V+P.w0),[P.Nmodes ,1]));
Rifft=MMifftc(RandNoise,P.Nt,P.Nmodes); % important to do proper iFT with scaling
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75 A = A+Rifft;

%% Solver parameters
opt = struct();

80 opt.dz = 5e-5;
opt.useAdapt = 1;
opt.useAdapt_RKerr = 1;
opt.useAdapt_mindz = 2.5e-5;
opt.useAdapt_maxdz = 1e-3;

85 opt.tol = 3e-4;
opt.solver = 2;

Listing C.3: Content of CCS_Fiber.m
function [ztarget,taper_zlist,COMSOL_Filenames] = CCS_Fiber(FiberType,rend)

switch rend % only showing one case as an example
case 0.48

5 dRings=[5.1, 4.69181, 4.28579, 3.88196, 3.48035, 3.08097, 2.68384, 2.28899, 1.89642]*1
e-6;

LList=[10.08, 9.3261, 8.5679, 7.80537, 7.03846, 6.26714, 5.49137, 4.71112, 3.92633]*1e
-6;

dRings = [dRings fliplr(dRings)]*1e6;
LList = [LList fliplr(LList)]*1e6;
COMSOL_Filenames = cell(length(LList),1);

10 for i = 1:length(LList)
COMSOL_Filenames{i,1}=sprintf('PCFChalc_rend%s_L%s_D%s',strrep(num2str(rend),'.','

-'),...
strrep(num2str(LList(i)),'.','-'),strrep(num2str(dRings(i)),'.','-'));

end
end

15
if ischar(FiberType)

switch FiberType
case 'plain' % no tapering test case

COMSOL_Filenames = {COMSOL_Filenames{1}};
20 ztarget = 0.1;

taper_zlist = ztarget;
case 'earlyW'

L_BT = 0.075;
L_DT = 0.03;

25 L_W = 0.02;
taper_zlist=cumsum([L_BT L_DT/8*ones(1,8) L_W]);
ztarget=taper_zlist(end); %Target total length of fiber

case 'smallBTAT'
L_BT = 0.075;

30 L_DT = 0.03;
L_W = 0.15;
L_UT = 0.03;
L_AT = 0.04;

35 taper_zlist=cumsum([L_BT L_DT/8*ones(1,8) L_W L_UT/8*ones(1,8)]);
ztarget=taper_zlist(end)+L_AT; %Target total length of fiber

end
else % Manually setting lengths

L_BT = FiberType(1);
40 L_DT = FiberType(2);

L_W = FiberType(3);
L_UT = FiberType(4);
L_AT = FiberType(5);
taper_zlist=cumsum([L_BT L_DT/8*ones(1,8) L_W L_UT/8*ones(1,8)]);

45 ztarget=taper_zlist(end)+L_AT; %Target total length of fiber
end

end
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Listing C.4: Content of CCS_GetCOMSOLData.m
function [D_cellarr,Q_cellarr,gsTerms,taus] = CCS_GetCOMSOLData(P,COMSOL_Filenames,LossFile)

V = P.V;
w0 = P.w0;

5 wpump = P.wpump;
c = P.c;
Nmodes = P.Nmodes;

load(LossFile)
10 D_cellarr = cell(1,length(COMSOL_Filenames));

Q_cellarr = cell(2,length(COMSOL_Filenames));
gsTerms = cell(1,length(COMSOL_Filenames));
taus = cell(1,length(COMSOL_Filenames));

15 % N.B.!: for the implementation to be truly multimode, the linear operator
% should be computed separately for each mode (except b_0 and b_1), but
% since the main purpose of the code was to simulate different
% polarisation modes for which the linear operator is virtually identical,
% this has not been implemented.

20
% Setting beta0 and beta1 w.r.t. dispersion in waist
idx = ceil(length(COMSOL_Filenames)/2);
fprintf('Pre-loop: Loading %s, ',COMSOL_Filenames{idx})
load([COMSOL_Filenames{idx}])

25 neff = reshape(Data(1,1,:),[1 length(Flist)]);

propagation_constant = 2*pi*neff.*Flist/c;
beta = real(propagation_constant);
dV_in = 2*pi*(Flist(2)-Flist(1));

30 beta1 = (beta(3:end) - beta(1:end-2))/(2*dV_in);
beta = interp1(2*pi*Flist,beta,V + w0,'pchip',0);
beta1 = interp1(2*pi*Flist(2:end-1),beta1,V + w0,'pchip',0);

beta0_w0 = interp1(V + w0, beta, wpump,'pchip',0);
35 beta1_wpump = interp1(V + w0, beta1, wpump,'pchip',0);

for i = 1:length(COMSOL_Filenames)

fprintf('Loading %s, \n',COMSOL_Filenames{i})
40 load([COMSOL_Filenames{i}]) % yields variables Flist and Data

neff = reshape(Data(1,1,:),[1 length(Flist)]);
GlassFraction = reshape(Data(1,14,:),[1,size(Data,3)]); % truncated
n0 = interp1(2*pi*Flist, neff, w0); % according to agger

45 propagation_constant = 2*pi*neff.*Flist/c;
beta = real(propagation_constant);
dV_in = 2*pi*(Flist(2)-Flist(1));

beta1 = (beta(3:end) - beta(1:end-2))/(2*dV_in);
50 beta2 = (beta(3:end) -2*beta(2:end-1) + beta(1:end-2))/dV_in^2;

beta3 = (1/2*beta(5:end) -beta(4:end-1) + beta(2:end-3) -1/2*beta(1:end-4))/dV_in^3;

% interpolating
GlassFraction = interp1(2*pi*Flist,GlassFraction,V + w0,'pchip',0);

55 attenuation_constant = interp1(2*pi*Flist,imag(propagation_constant),V + w0,'pchip',0);
beta = interp1(2*pi*Flist,beta,V + w0,'pchip',0);
beta1 = interp1(2*pi*Flist(2:end-1),beta1,V + w0,'pchip',0);
beta2 = interp1(2*pi*Flist(2:end-1),beta2,V + w0,'pchip',0);
beta3 = interp1(2*pi*Flist(3:end-2),beta3,V + w0,'pchip',0);

60
neff = interp1(2*pi*Flist,neff,V+ w0,'pchip',0);
Aeff = interp1(2*pi*Flist,Aeff,V+ w0,'pchip',eps);

OverlapInt1 = interp1(2*pi*Flist,OverlapInt1,V+ w0,'pchip',0);
65 OverlapInt2 = interp1(2*pi*Flist,OverlapInt2,V+ w0,'pchip',0);
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% interpolate loss data
Loss_Beta_Meas=interp1(c*10^6./LossData(:,1),LossData(:,2),(P.V+P.w0)/(2*pi),'pchip',0);
Loss_Beta_Meas(Loss_Beta_Meas >0)=0;

70 Loss_Beta=Loss_Beta_Meas;
Loss_Beta((P.V+P.w0)/(2*pi) > 235e12)=-1/(20*log10(exp(1)))*1e3; %High frequency loss.
alpha = -2*(P.alphaCoeffA*attenuation_constant + P.alphaCoeffB*GlassFraction .* Loss_Beta)

;

%% Linear operator
75

B = beta - beta0_w0 - beta1_wpump.*V;

D_cellarr{i} = fftshift(1i*B - alpha/2); % linear operator

80
%% Q

Q1 = zeros(length(V),Nmodes^4);
Q2 = zeros(length(V),Nmodes^4);

85
for p = 0:Nmodes-1

for ll = 0:Nmodes-1
for m = 0:Nmodes-1

for n = 0:Nmodes-1
90 if P.MPD

Q1(:,1 + n + 2*m + 4*ll + p*8) = OverlapInt1(:,p+1,ll+1,m+1,n+1);
Q2(:,1 + n + 2*m + 4*ll + p*8) = OverlapInt2(:,p+1,ll+1,m+1,n+1);

else
Q1(:,1 + n + 2*m + 4*ll + p*8) = interp1(V + w0,...

95 OverlapInt1(:,p+1,ll+1,m+1,n+1),w0);
Q2(:,1 + n + 2*m + 4*ll + p*8) = interp1(V + w0,...

OverlapInt2(:,p+1,ll+1,m+1,n+1),w0);
end

100 end
end

end
end

105 Q1 = P.eps0^2*real(n0)^2*c^2/12 * Q1;
Q2 = P.eps0^2*real(n0)^2*c^2/12 * Q2;

%% Shock term

110 if P.useAllShockTerms
tauArr = zeros(2,Nmodes^4);

for p = 1:Nmodes^4
dQ1 = interp1(P.V(2:end-1), (Q1(3:end,1)-Q1(1:end-2,1))/(2*P.dV) ./ Q1(2:end-1,1),

0, 'pchip');
115 dQ2 = interp1(P.V(2:end-1), (Q2(3:end,1)-Q2(1:end-2,1))/(2*P.dV) ./ Q2(2:end-1,1),

0, 'pchip');
tauArr(1,p) = 1/w0 + dQ1; % In CCS_Integrator: (1 + V.* tauArr(p))
tauArr(2,p) = 1/w0 + dQ2; % In CCS_Integrator: (1 + V.* tauArr(p))

end
taus{i} = tauArr;

120 gsTerms{i} = 1i*P.n2*P.w0/P.c;
else

dAeff = interp1( P.V(2:end-1), (Aeff(3:end) - Aeff(1:end-2))/(2*P.dV/(2*pi)),0,'pchip'
,0);

gsTerms{i} = fftshift(1i*P.n2*P.w0/P.c*(1+V.*(1/w0 - P.gsCoeff./Aeff*dAeff)));
end

125
%% Finalize
Q_cellarr{1,i} = Q1;
Q_cellarr{2,i} = Q2;
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130 fprintf('gamma at w0 is ca. %0.3f\n',3*interp1(V,Q1(:,1),0)*P.n2*P.w0/c)

end

Listing C.5: Content of CCS_Integrator.m
function [Z,ATZ,ext] = CCS_Integrator(P,AT0, zlist,taper_zlist,D_c,Q_c,opt)

%% Init
Z = zeros(1,P.Nz);

5 ATZ = zeros(P.Nz, P.Nt*P.Nmodes);
nzi = 1; % next z idx
nextz = 0; % forcing the first save in the loop

AT = AT0;
10 z = 0;

steps = 0;
alpha = zeros(P.Nt,1);

% Handle
15 PNf = @(AT_pIn,alphaIn) PhotonNumber(P.Nt,P.Nmodes,AT_pIn ,...

P.Vshift,P.w0,P.dV,alphaIn,P);

% Default options
useAdapt = 1;

20 useAdapt_RKerr = 1; % whether to use RK error estimators if possible
useAdapt_mindz = 0.5e-5; % do not let step sizes come below this
useAdapt_maxdz = 1e-2; % do not let step sizes come above this
dz = 1e-4; % initial dz
tol = 1e-5;

25 solver = 1;

if isfield(opt, 'useAdapt'), useAdapt = opt.useAdapt; end
if isfield(opt, 'useAdapt_RKerr'), useAdapt_RKerr = opt.useAdapt_RKerr; end
if isfield(opt, 'useAdapt_mindz'), useAdapt_mindz = opt.useAdapt_mindz; end

30 if isfield(opt, 'useAdapt_maxdz'), useAdapt_maxdz = opt.useAdapt_maxdz; end
if isfield(opt, 'tol'), tol = opt.tol; end
if isfield(opt, 'dz'), dz = opt.dz; end
if isfield(opt, 'solver'), solver = opt.solver; end

35 ext = struct();
ext.PNum = zeros(length(Z),1);
ext.predPNum = zeros(length(Z),1);
ext.steps = zeros(length(Z),1);
ext.dz = zeros(length(Z),1);

40 ext.time = zeros(length(Z),1);
PNum = PNf(AT0,alpha);
predPNum = PNum;

tic
45 while nzi <= length(Z)

%% Saving
if z+1e-13 > nextz

Z(nzi) = z;
ext.steps(nzi) = steps;

50 ext.dz(nzi) = dz;
ext.time(nzi) = toc;
ext.PNum(nzi) = PNum;
ext.predPNum(nzi) = predPNum;
ATZ(nzi,:) = AT;

55
eta = (toc/steps)*(zlist(end)-z)/dz;
fprintf('T:%04.0f-%04.0f S:%.5d z:%0.2e dz:%0.2e ni:%.2d p:%0.4e pp:%0.4e\n',toc

,eta,steps,z,dz,nzi,PNum,predPNum)

nzi = nzi + 1;
60 if nzi > length(Z) || z+1e-13 > zlist(end), break; end
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nextz = zlist(nzi);
end

%% Preprocessing
65 % tapering blending

if z >= taper_zlist(end)
D = D_c{end};
Q1 = Q_c{1,end};
Q2 = Q_c{2,end};

70 P.gsTerm = P.gsTerms{end};
P.tau = P.taus{end};

elseif z <= taper_zlist(1)
D = D_c{1};
Q1 = Q_c{1,1};

75 Q2 = Q_c{2,1};
P.gsTerm = P.gsTerms{1};
P.tau = P.taus{1};

else
idx2 = find(z < taper_zlist, 1);

80 idx1 = idx2 - 1;
r = (z-taper_zlist(idx1))/(taper_zlist(idx2)-taper_zlist(idx1));
D = D_c{idx2}*r + (1-r)*D_c{idx1};
Q1 = Q_c{1,idx2}*r + (1-r)*Q_c{1,idx1};
Q2 = Q_c{2,idx2}*r + (1-r)*Q_c{2,idx1};

85 P.gsTerm = P.gsTerms{idx2}*r + (1-r)*P.gsTerms{idx1};
P.tau = P.taus{idx2}*r + (1-r)*P.taus{idx1};

end
alpha = -2*real(D);

90
%% Processing
if ~useAdapt

switch solver
case 1 % RK4IP method

95 ATzh = IP_Step(P,AT,dz,D,Q1,Q2);
case 2 % DPIP method

[ATzh,ATzh4] = IP_Step_DOPRI(P,AT,dz,D,Q1,Q2);
case 3 % Fehlberg method

[ATzh,ATzh4] = IP_Step_Fehlberg(P,AT,dz,D,Q1,Q2);
100 end

[PNum, dPdz] = PNf(ATzh,alpha);
predPNum = predPNum + dPdz*dz;
AT = ATzh;

105 z = z + dz;
steps = steps + 1;

else
acceptStep = 0;

110 while ~acceptStep
acceptStep = 1;

switch solver
case 1 % RK4IP method, no RK error estimate avilable

115 ATzh = IP_Step(P,AT,dz,D,Q1,Q2);
[PNum_new, dPdz] = PNf(ATzh,alpha);
PTrue = PNum + dPdz*dz;
predPNum_new = predPNum + dPdz*dz;
relerr = abs(PNum_new-PTrue) / PTrue;

120 case 2 % DPIP method
[ATzh,ATzh4] = IP_Step_DOPRI(P,AT,dz,D,Q1,Q2);
[PNum_new, dPdz] = PNf(ATzh,alpha);
PTrue = PNum + dPdz*dz;
predPNum_new = predPNum + dPdz*dz;

125 if useAdapt_RKerr
relerr = sum(abs( abs(ATzh).^2 - abs(ATzh4).^2 )) / max(abs(ATzh).^2);

else
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relerr = abs(PNum_new-PTrue) / PTrue;
end

130
case 3 % Fehlberg method

[ATzh,ATzh4] = IP_Step_Fehlberg(P,AT,dz,D,Q1,Q2);
[PNum_new, dPdz] = PNf(ATzh,alpha);
PTrue = PNum + dPdz*dz;

135 if useAdapt_RKerr
relerr = norm(ATzh-ATzh4)/norm(ATzh);

else
relerr = abs(PNum_new-PTrue) / PTrue;

end
140 end

if relerr > 2*tol && dz > useAdapt_mindz
% reject step
acceptStep = 0;

145 dz = dz/2;
else

% accept step
AT = ATzh;
z = z + dz;

150 steps = steps + 1;
PNum = PNum_new;
predPNum = predPNum_new;

end
end

155
% prepare dz for next iteration
if relerr > tol && dz > useAdapt_mindz

dz = dz/2^(1/5);
elseif relerr < 0.1*tol && dz < useAdapt_maxdz

160 dz = dz*2^(1/5);
end

% making sure we hit the exact end
if z + dz > zlist(end)

165 dz = zlist(end)-z;
end

end
end

170
fprintf('Steps taken %d\n',steps);

end

175 %% Functions
function [P,dPdz] = PhotonNumber(Nt,Nmodes,AT_p,V,w0,dV,alpha,P)

photonDensity = zeros(Nt,1);
for p = 0:Nmodes-1

180 AT=AT_p((1:Nt)+Nt*p);
photonDensity = photonDensity + abs(P.fftc(AT)).^2 ./ (V+w0) * dV;

end

P = sum(photonDensity);
185 dPdz = -sum(alpha .* photonDensity);

end

function [ATzh5,ATzh4] = IP_Step_DOPRI(P,AT,h,D,Q1,Q2)
190

Nop = @(AT) NonlinearOperator(P,AT,Q1,Q2);
FT = @(FD) MMfftc(FD, P.Nt,P.Nmodes);
iFT = @(TD) MMifftc(TD,P.Nt,P.Nmodes);
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195 hD = h*D;
expDf = @(x)repmat(exp(x*hD),[P.Nmodes 1]);

expD = expDf(1);
AI = iFT(expD.*FT(AT));

200 k1 = iFT(expD.*FT(h*Nop(AT)));
k2 = iFT(expDf(4/5).*FT(h*Nop(iFT(expDf(-4/5).*FT(AI+k1/5)))));
k3 = iFT(expDf(7/10).*FT(h*Nop(iFT(expDf(-7/10).*FT(AI+3/40*k1+9/40*k2)))));
k4 = iFT(expDf(1/5).*FT(h*Nop(iFT(expDf(-1/5).*FT(AI+44/45*k1-56/15*k2+32/9*k3)))));
k5 = iFT(expDf(1/9).*FT(h*Nop(iFT(expDf(-1/9).*FT(AI+19372/6561*k1-25360/2187*k2

+64448/6561*k3-212/729*k4)))));
205

k6 = h*Nop(AI+9017/3168*k1-355/33*k2+46732/5247*k3+49/176*k4-5103/18656*k5);
lincomb = AI+35/384*k1+500/1113*k3+125/192*k4-2187/6784*k5+11/84*k6;
k7 = h*Nop(lincomb);

210 ATzh5 = (lincomb);
ATzh4 = (AI+5179/57600*k1+7571/16695*k3+393/640*k4-92097/339200*k5+187/2100*k6+1/40*k7);

end

function [ATzh5,ATzh4] = IP_Step_Fehlberg(P,AT,h,D,Q1,Q2)
215

Nop = @(AT) NonlinearOperator(P,AT,Q1,Q2);
FT = @(FD) MMfftc(FD, P.Nt,P.Nmodes);
iFT = @(TD) MMifftc(TD,P.Nt,P.Nmodes);

220 hD = h*D;
expDf = @(x)repmat(exp(x*hD),[P.Nmodes 1]);

expD = expDf(1/2);
AI = iFT(expD.*FT(AT));

225 k1 = iFT(expD.*FT(h*Nop(AT)));
k2 = iFT(expDf(1/4).*FT(h*Nop(iFT(expDf(-1/4).*FT(AI+k1/4)))));
k3 = iFT(expDf(1/8).*FT(h*Nop(iFT(expDf(-1/8).*FT(AI+3/32*k1+9/32*k2)))));
k4 = iFT(expDf(-11/26).*FT(h*Nop(iFT(expDf(11/26).*FT(AI+1932/2197*k1-7200/2197*k2

+7296/2197*k3)))));
k5 = iFT(expDf(-1/2).*FT(h*Nop(iFT(expDf(1/2).*FT(AI+439/216*k1-8*k2+3680/513*k3-845/4104*

k4)))));
230

k6 = h*Nop(AI-8/27*k1+2*k2-3544/2565*k3+1859/4104*k4-11/40*k5);

ATzh5 = iFT(expD.*FT(AI+16/135*k1+6656/12825*k3+28561/56430*k4-9/50*k5+2/55*k6));
ATzh4 = iFT(expD.*FT(AI+25/216*k1+1408/2565*k3+2197/4104*k4-1/5*k5));

235 end

function ATzh = IP_Step(P,AT,h,D,Q1,Q2)

240 Nop = @(AT) NonlinearOperator(P,AT,Q1,Q2);
FT = @(FD) MMfftc(FD, P.Nt,P.Nmodes);
iFT = @(TD) MMifftc(TD,P.Nt,P.Nmodes);

% linear op
245 expD = repmat(exp(h/2*D),[P.Nmodes 1]);

AI = iFT(expD.*FT(AT));
k1 = iFT(expD.*FT(h*Nop(AT)));
k2 = h*Nop(AI + k1/2);%.*(AI + k1/2);
k3 = h*Nop(AI + k2/2);%.*(AI + k2/2);

250 k4 = h*Nop(iFT(expD.*FT(AI + k3)));

ATzh = iFT(expD.*FT(AI + k1/6 + k2/3 + k3/3)) + k4/6;
end

255
function N = NonlinearOperator(P,AT,Q1v,Q2v)

Nt = P.Nt;
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N = zeros(Nt,1);
260

A = cell(1,P.Nmodes);
for p = 0:P.Nmodes-1

A{p+1} = AT((1:Nt) + p*Nt);
end

265
for p = 0:P.Nmodes-1

Ntemp = zeros(Nt,1);
for ll = 0:P.Nmodes-1

for m = 0:P.Nmodes-1
270 for n = 0:P.Nmodes-1

Q1 = Q1v(:,1 + n + 2*m + 4*ll + 8*p);
Q2 = Q2v(:,1 + n + 2*m + 4*ll + 8*p);
if norm(Q1) < eps && norm(Q2) < eps, continue, end
Al = A{ll+1};

275 Am = A{m+1};
An = A{n+1};

if abs(P.fr) > eps
RamanConv1 = (1-P.fr)*Am.*conj(An) + P.ifftc(P.RW.*P.fftc(Am.*conj(An)));

280 RamanConv2 = (1-P.fr)*Am.*An + P.ifftc(P.RWexp.*P.fftc(Am.*An));
else
RamanConv1 = (1-P.fr)*Am.*conj(An);
RamanConv2 = (1-P.fr)*Am.*An;
end

285
if P.useAllShockTerms

tau1 = P.tau(1,1 + n + 2*m + 4*ll + 8*p);
tau2 = P.tau(2,1 + n + 2*m + 4*ll + 8*p);
contrib = (1 + P.Vshift*tau1).*P.fftc(2*Q1.*Al .* RamanConv1) ...

290 + (1 + P.Vshift*tau2).*P.fftc(Q2.*conj(Al) .* RamanConv2);
else

contrib = P.fftc(2*Q1.*Al .* RamanConv1 ...
+ Q2.*conj(Al) .* RamanConv2);

end
295

Ntemp = Ntemp + contrib;
end

end
end

300
N((1:Nt) + Nt*p) = P.ifftc(P.gsTerm .* Ntemp);

end

305
end



APPENDIX D
Soliton numbers

The soliton number and associated parameters inferred from the spectrogram in chapter 7 are
shown in the table below.

Table D.1: Soliton numbers that were calculated based on estimations from the spectrogram and
corresponding time domain power plots.

N P [kW] γ [Wm]−1 GVD [ps2/m] TFWHM [ps] Aeff [µm2]

2.03 5.29 0.19 -0.89 0.08 35
1.76 4.14 0.19 -0.71 0.07 35
1.74 1.78 0.19 -0.92 0.12 35
1.91 2.09 0.19 -0.89 0.12 35
1.63 3.83 0.19 -0.39 0.05 35
1.86 1.61 0.19 -0.99 0.14 35
1.61 0.12 0.19 -0.74 0.38 35
1.26 0.51 0.19 -0.59 0.13 35
2.21 0.17 0.06 -0.39 0.60 120
1.62 0.86 0.06 -0.94 0.30 120
1.17 0.36 0.06 -0.76 0.30 120
0.98 0.35 0.06 -0.56 0.22 120
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