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Three-dimensional nanomagnetometry:
a computational study
C. N. Christensen

Hughes Hall

Nanomagnetism is currently a field of great interest for in-
formation technology, and a recent trend to bring nanomag-
netism into 3D by employing non-planar structures puts a lot
of new physics into play and potentially opens the door for
novel and revolutionary applications. In order for this tran-
sition to 3D structures to happen, reliable measuring meth-
ods and computational tools are essential. In this work the
magneto-optical Kerr effect (MOKE) is theoretically consid-
ered for its potential as the measuring principle of magnetic
properties in 3D nanostructures. The first steps towards a
framework for computing MOKE in a generalised 3D set-
ting are taken, and schemes to use it for characterisation of
geometric and magnetic properties are proposed. Predicted
hysteresis loops are compared to experimental results and
decent agreement is found.

Preface. The project has been done under supervision
of Dr Amalio Fernandez-Pacheco from the Thin Film
Magnetism Group at University of Cambridge. Amalio
has been very supportive throughout the project, and has
insisted on weekly meetings each time providing motiva-
tion and interesting new ideas to pursue. Amalio has also
put me in contact with PhD students in the group that
have been working on topics related to this project, in
particular Ddalo Sanz-Hernandez, whom has performed
an experiment, elaborated in the following, that has in-
spired some of the methodology presented in this report.
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1 Introduction

The magneto-optic effects have many useful applications
that are studied extensively in the literature. For example
imaging of magnetic domains [1] and their propagation
in nanostructures, such as ultrathin nanowires using the
magneto-optic Kerr effect (henceforth MOKE) [2]. Other
applications of the MOKE include measurements of mag-
netisation responses [3], or surface magnetisation vectors
[4], of nanostructures on ultra-fast timescales.

The range of applications underline the technological
potential of exploiting the magneto-optic effects.

An exciting trend in recent years, partly driven by
recent advances in 3D nanoprinting [5], has been to con-
sider the extension of current magneto-optic applications
to three dimensions [5, 6] as envisaged on figure 1. The
benefits of extending nanomagnetism into 3D are man-
ifold. It allows for new spin textures with non-trivial
topological charges (e.g. vortices and skyrmions) that
are far more robust to external perturbations into trivial
states [5]. In addition to this enhanced stability, 3D nano-
magnets are also expected to have particle-like properties
and will yield dramatically higher surface-to-volume ra-
tios relative to planar systems that make them interesting
for sensing and actuation applications [5]. Yet another
promising possibility of 3D magnets are their use in stor-

Figure 1: The transition from planar structures to three-
dimensional ones gives a lot of liberty to design new appli-
cations. New characterisation and computational tools are
crucial for this to be realised. Figure from supervisor.
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age, where multiple data bits could be stored magneti-
cally in a vertical fashion rather than the planar systems
of today, increasing data density significantly and possi-
bly allowing new functionality. Many more possibilities
exist, some more exotic such as 3D nanomagnets serving
as logic gates opening up new computing architectures
[7, 8] or as nodes in magnetic neural networks [9].

Realising applications such as the above-mentioned
requires a rigorous theoretical understanding as well as
computational capability of the physics in systems with
complex 3D geometries. However, the research field of
3D nanomagnets is still only in its infancy, and the lit-
erature on computations and characterisations of mag-
netic 3D nanostructures is very scarce. The main ad-
vances have been by experimental studies, of which one
will be elaborated in the following, and in particular the
MOKE shows promise as the measuring principle for 3D
applications. The need for computational methods and
the promising experimental advances using MOKE con-
stitute the motivation behind this project. The aim of the
project has been to take the first steps towards making
a computational framework for simulating the MOKE in
a generalised 3D setting and using it for characterisation
purposes.

Experimental progress. One of the first reports of
successfully using the MOKE for analysis of magnetic
nanostructures is a study from 2003 [11], in which a rel-
atively simple optical setup is employed to locate indi-
vidual magnetic nanowires of down to 100 nm width.
The sample considered here does not truly extend into
three dimensions as it simply consists of nanowires sit-
uated in the surface of a Si substrate, and as such it is
difficult to see how their method would generalise to more
complex nanostructured geometries, especially those that
have unique 3D features extending away from the sub-
strate. The paper ends on the note that their measure-

Figure 2: (Left) 3D nanostructure fabricated by printing a
nanowire onto a thin film substrate at an angle. Two pillars
support the nanowire ramp. (Right) Optical setup used to
implement the DF-MOKE method. The blue and red cubes
represent the photodetectors, and the black one is the laser,
which is angled according to the angle of the ramp of the
sample in the center of the diagram. Both images are from
[10].

ments do not reach a limit for the MOKE performance,
and encourages others to consider MOKE for the analysis
of magnetic nanostructures given that improvements on
the sensitivity would be achievable.

Another study [10], primarily by members of the
Thin Film Magnetism Group (TFM Group), recently suc-
ceeded in fabricating a 3D magnetic conduit and charac-
terised it afterwards using the DF-MOKE method. The
nanostructure is a geometry consisting of a 300 nm width
ramp, a nanowire, printed on a thin film surface at an
angle, such that one end is in direct contact with the
surface and the other extends from the surface. The end
that touches the surface is called the 2D-3D interconnect,
since this is the point at which domain walls can prop-
agate from the thin film substrate into the ramp. The
ramp is supported by two non-magnetic pillars to make
it more stable. The geometry can be seen on the left of
figure 2. Finally a magnetic characterisation is performed
using a setup with two opposing detectors and one laser
that is positioned at a specific angle matching that of the
ramp. The optical setup is shown on the right of figure
2. From this setup the MOKE can be exploited to give
distinguishable information about the magnetisation of
the film substrate and the ramp. This approach has been
dubbed the dark-field MOKE as a reference to the signal
reflected from the ramp.

2 Magneto-optic Kerr effect
The MOKE is one of a series of related magneto-optic
effects that were discovered in the 19th century. The
first of those effects to be discovered is the Faraday effect
in an experiment, where Faraday made linearly polarised
light propagate through a glass cylinder in a magnetic
field parallel to the propagation direction and observed
a rotation of the plane of polarisation. Later when the
theoretical basis was established by Maxwell it became
clear that the phenomenon was well explained by treating

Figure 3: The three special cases of MOKE that are com-
monly considered: polar, longitudinal and transverse con-
figurations. The shown coordinate system follows that of
[16, 17].
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the linearly polarised light as a superposition of a left
and right circularly polarised beam, which due to circular
birefringence travel at slightly different speeds through
the medium [12].

A corresponding effect in reflection rather than trans-
mission was discovered by Kerr in 1876, namely the
MOKE, i.e. by reflecting light from a magnetised surface
a circular birefringence is introduced (or the light may
become elliptically polarised if the medium is absorbing,
i.e. n is complex, and have elliptical birefringence [13]).
Kerr also discovered an electro-optic effect the year prior
to this, which is also sometimes referred to as the non-
linear Kerr effect and is the source of nonlinearity in the
nonlinear Schrdinger equation [14, 15].

The MOKE is often considered in three special cases
referred to as the polar, longitudinal, transverse config-
urations. As shown on figure 3 these cases correspond
to the magnetisation being perpendicular to the surface
and parallel to the optical plane (polar), parallel to the
surface and optical plane (longitudinal), and parallel to
the surface and perpendicular to the optical plane (trans-
verse).

In this report we employ the coordinate system as
shown on figure 3. Polarisation states are written us-
ing the standard p and s axes, representing the compo-
nent parallel to the optical plane and the component per-
pendicular to the optical plane, respectively. The vector[
p s

]T
is referred to as a Jones vector. To describe the

rotation of the polarisation state associated with MOKE,
we may write the[

p2

s2

]
reflected

=

[
rpp rps
rsp rss

] [
p1

s1

]
incident

, (1)

where the polarisation state of the reflected and incident
beam is written on the left-hand and right-hand side, re-
spectively. The coefficients of the matrix are referred to
as Fresnel reflection coefficients. These coefficients are
fairly well documented in the literature. However, in sev-
eral papers the coefficients appear with small errors, and
thus validation of the coefficients is crucial. Details about
some of these mistakes will be briefly described in a sec-
tion below.

Adding to the confusion, some authors do not explic-
itly state the coordinate system on which their stated co-
efficients are based on, although it is usually easy to infer
the implied coordinate system given familiarity with the
MOKE theory and the associated Fresnel coefficients.

The following equations for the coefficients have been
compiled after reviewing analytical work by multiple au-
thors to sort out different errors. The generalised Fresnel
coefficients of reflection for the Kerr effect are given by
[16, 17, 18, 19, 20, 21]

rpp =
n1 cos θ0 − n0 cos θ1

n1 cos θ0 + n0 cos θ1
− imx

2n0n1 cos θ0 sin θ1Q

(n1 cos θ0 + n0 cos θ1)2
,

(2)

rps =
in0n1 cos θ0(mz cos θ1 −my sin θ1)Q

(n1 cos θ0 + n0 cos θ1)(n0 cos θ0 + n1 cos θ1) cos θ1
,

(3)

rsp =
in0n1 cos θ0(mz cos θ1 +my sin θ1)Q

(n1 cos θ0 + n0 cos θ1)(n0 cos θ0 + n1 cos θ1) cos θ1
,

(4)

rss =
n0 cos θ0 − n1 cos θ1

n0 cos θ0 + n1 cos θ1
, (5)

where θ0, n0 and n1 are the angle of incidence, the re-
fractive index of the nonmagnetic medium, and that of
the magnetic medium, respectively. The parameter Q is
a constant, referred to as the magneto-optical (MO) con-
stant or Voigt parameter. The variables mx,my and mz

are the components of the magnetisation unit vector.
Thorough derivations of the coefficients can be found

in the books by G. S. Krinchik and by K. Zvezdin et al
[20].

Validation. The coefficients of (2) through (5) are con-
sistent with the expressions in a recent paper [21], when
transforming the coordinate system by x′ = y, y′ = −x
and z′ = z, where x′, y′ and z′ are the transformed co-
ordinates corresponding to the coordinate system used in
the paper. For the special cases, i.e. the polar, longitudi-
nal and transverse cases, the coefficients reduce to simple
well-known formulae as seen in [1, 13, 20] assuming ap-
propriate coordinate system transformations.

The implementation of the coefficients has been veri-
fied by reproducing certain plots of the coefficients that
have been found in the literature [17, 1, 20]. An example
is shown on figure 4, in which a coefficient for each of the
three different special cases are shown with parameters
corresponding to commonly used magnetic compositions;
Co/Cu and Co/Pd. The plots that these three reproduce
can be found in [20], along with more plots of the other
coefficients that have also been reproduced but will be
omitted here. The plot for the transverse MOKE special
case does not simply show the norm square of a coeffi-
cient, but the differential signal |rpp(Q)|2−|rpp(Q = 0)|2,
which corresponds to the signal detected by employing a
certain detection scheme.

2.1 Mistakes in literature
In an important work from 1993 [19], the authors Yang
and Scheinfein stated the MOKE Fresnel coefficients that
they had correctly derived. However, in their formula for
rpp, equation (12) in the paper, the Q-dependent term
was incorrectly written without a squared denominator.
The error was not present later in the same paper, when
the coefficients were stated in another context, equation
(16), but the typo has prevailed by being reprinted by
other authors [16, 17, 20].

In [16] there is a sign error in an expression for the
complex Kerr angle, equation (15), and although cor-
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Figure 4: Plots for three special cases of magnetic configuration given two different material compositions: Co/Cu with
n1 = 1.58 + 3.58i and Q = 0.01772− 0.0063i, and Co/Pd with n1 = 2.04 + 4.06i and Q = 0.00038− 0.00314i. The two
leftmost plots show the coefficient |rsp|2, while the rightmost plot shows the differential signal |rpp(Q)|2 − |rpp(Q = 0)|2.

rected in a later paper [17], equation (28), the accom-
panying text still implies the same error. Another sign
error occurs in [16], equation (19), but appears correct in
[17].

While some of these errors have brought confusion
during the review of the MOKE theory, it has helped to
consider several different sources and in particular more
recent ones [20, 21].

2.2 Extension to 3D

We shall restrict the treatment of 3D surfaces to convex
geometries, i.e. surfaces that do not occlude itself from
any angle contrary to concave surfaces. This is a major
simplification since we do not need to consider the possi-
bility of multiple reflections from the same object, and the
single point of incidence will always be easy to determine.
Furthermore, any 3D surface can be thought of as a grid
of infinitesimal planes. This is an important realisation,
because the problem reduces to computing the MOKE
for planar structures situated in 3D space. To image a
curved 3D surface, a scanning algorithm that discretises
the surface would have to be employed, after which it
would be possible to reconstruct the actual curved sur-
face although in an approximative manner depending on
the discretisation resolution.

For the previously stated Fresnel coefficients to be ap-
plicable in the setting of a 3D plane, we will first define
and derive various quantities.

Change of basis. Consider a magnetised plane, rep-
resenting the sample that is to be measured upon, de-
fined by the normalised normal vector n and a point in
the plane pn. Polarised light reflected on this plane will
undergo Kerr rotation. To describe polarisation in the
ps-basis, we adopt a coordinate system, call it b, with the
basis vectors

ez′ = k1/|k1|, ey′ = n× ez′ , ex′ = ey′ × ez′ , (6)

where k1 is the wave vector of the light.

The basis change matrix aMb from coordinate system

b to the original, global coordinate system a fulfilsxy
z


a

= aMb

x′y′
z′


b

, (7)

where

aMb =
[
ex′ ey′ ez′

]
. (8)

To transform to b from a the inverse matrix is usedx′y′
z′


b

= bMa

xy
z


a

(9)

=
[
ex′ ey′ ez′

]−1

xy
z


a

. (10)

Point of incidence. Given a plane representing the
sample with known orientation and position, the point of
incidence of a beam travelling towards it will be needed
for computations. The point of incidence can be written
as

h = p0 + sk1, (11)

where s is found from the orthogonality condition be-
tween vectors of a plane and its normal vector

n · (p0 + sk1 − pn) = 0⇔ s =
n · (pn − p0)

n · k1
. (12)

Reflection vector. Consider a beam with direction
vector k incident on a plane with normal n. The direction
vector resulting from reflection, referred to as a reflection
vector, can be found by using the laws of reflection. In
a vector description this means that the reflection vector
will have the same inclination to the surface as the inci-
dent vector, while it is only the perpendicular component
of the incident vector that is reflected. By being reflected
the perpendicular component simply changes sign, which
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Figure 5: Example of a MOKE computation for the envisaged system of a spherical emitter and detector used in analysis
and computations. The black line represents a beam emitted from the shell incident, which is incident on the sample shown
as the coloured planar surface. The red line is the reflected beam, which is detected on the shell. The incident beam is
chosen to have a random linear polarisation, which is plotted in a sp-plot in the upper-right of the figure with the Jones
vector components indicated in the title. The polarisation after reflection is similarly plotted in the middle-right of the figure.
In the bottom-right is a 2D projection of the system onto the optical plane, which is performed in the MOKE computation
in order to apply the Fresnel coefficients. The randomly generated parameters are: M = (0.7985, 0.2627, 0.5417), n =
(0.3753, 0.7773, 0.5049), pstart = (8.59, 5.11, 0.09), k1 = (−0.87, . − 0.49,−0.07)., where M is the magnetisation, n the
sample normal vector, pstart is the point on the shell where light is emitted and k1 is the initial wave vector. The material
parameters are those for Co/Cu – n1 = 1.58 + 3.58i and Q = 0.01772− 0.0063i.

corresponds to removing the component twice from the
incident vector,

r = k− 2n [k · n] , (13)

where n is assumed to be a unit vector.

Angle of incidence. A wave vector k1 directed at a
plane with normal n, both vectors assumed to be nor-
malised, has an angle of incidence given by

v = min [acos(k1 · n), π − acos(k1 · n)] , (14)

where the min function ensures that the angle is almost
at most 90 degrees, even when the normal vector is not
directed towards the incident beam.

2.3 Virtual system
To make analysis and computations in the following sec-
tions more concrete, we shall consider a specific system
without loss of generality. This system consists of a spher-
ical detector and emitter with a sample somewhere inside
it. This means that light can be emitted in any direction
towards the interior of the sphere from any position on
the shell, and regardless of the position and orientation
of the sample, the reflected beam will propagate back to
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Figure 6: Unknown parameters that are addressed in the
inverse problems. Inferring the geometric and material prop-
erties are treated as two separate problems.

the shell and be detected.

The system is shown on figure 5, where a random
instance is used as an example. For an incident beam
with linear polarisation state, shown as the black line,
the MOKE is seen to induce ellipticity in the reflected
polarisation state due to circular birefringence imposed
by the imaginary part of the used MO constant Q.

3 The inverse problems
We shall now consider the problem of characterising a
sample of which nothings is known – see figure 6. There
are both geometric parameters and material parameters
(most importantly, the magnetisation and MO constant),
and there will be a distinction of the problems of char-
acterising each type of parameters. We seek to infer the
parameters from performing measurements of reflection
and MOKE, and therefore the problems will be referred
to as the inverse problems, or the inverse geometry and
inverse magnetisation problem, respectively.

3.1 Inferring the geometry.
The geometry refers to the orientation and position of a
planar sample in space. To infer this by measurements of
reflection, a scheme will be employed that uses two beams
with wave vectors ki, source points pi and destination
points qi; source and destination points meaning point of
emission and detection, respectively. The key point of the
scheme to obtain a fully determined solvable problem is

Figure 7: Overview of the scheme for the inverse geometry
problem showing the unknown parameters to be determined:
plane orientation and position.

to prepare the two beams that are linearly independent,
i.e. with either different source points or different initial
wave vectors. The scheme is shown on figure 7. Let
each beam be incident on the plane at position hi. The
equations that each beam provides are then given by the
two coupled nonlinear equations

pi +

√
(hi − pi)

2
ki = hi, (15)

hi +

√
(qi − hi)

2
(ki − 2n [ki · n]) = qi. (16)

The equations simply describe the relation between the
source, incidence and destination points based on the
wave vector, normal vector and reflection vector. As the
vectors are three-dimensional, each beam provides 5 lin-
early independent equations and introduces 3 unknowns,
and along with the normal vector of the plane, there is
collectively 10 linearly independent equations and 9 un-
knowns when using the two beams. Had there only been
a single beam, the problem would be underdetermined,
since there would then be 6 unknowns and 5 linearly inde-
pendent equations. A closed-form solution does not exist
due to the nonlinearity, but a nonlinear least squares nu-
merical method can be employed to solve

(n,h1,h2) = arg min
n,h1,h2

∑
i=1,2


 hi − pi√

(hi − pi)
2
− ki

2

+

 qi − hi√
(qi − hi)

2
− ki + 2n [ki · n]

2


(17)

3.2 Inferring the magnetisation.
In this problem the magnetisation, the MO constant and
the refractive index of the sample are desired quantities.
We assume that the inverse geometry problem has been
solved, such that the sample plane’s normal is known.

Figure 8: Overview of the scheme for the inverse mag-
netisation problem showing the unknown parameters to be
determined: magnetisation vector, MO constant and refrac-
tive index.
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For this scheme consider two separate measurements
of the Kerr rotation of a light beam prepared to have
different polarisation states but the same wave vector k1

in the two measurements – see figure 8. Let the initial
Jones vector in each measurement be J1 = (p1, s1) and
J1 = (p2, s2). The resulting Jones vector after Kerr ro-
tation of Ji is given by

Ji
′ = GJi ⇔

[
p′i
s′i

]
=

[
rpp rps
rsp rss,

] [
pi
si

]
, (18)

where G is the matrix of Fresnel reflection coefficients
related to the magneto-optic Kerr effect. The formulae
for these coefficients are known analytically, (2) through
(5), but in the case of the inverse problem, these formulae
cannot be evaluated as they depend on the unknowns.
Instead we determine the coefficients based on the two
polarisation measurements

p′1
s′1
p′2
s′2

 =


p1 s1 0 0
0 0 p1 s1

p2 s2 0 0
0 0 p2 s2



rpp
rps
rsp
rss

 (19)

⇔


rpp
rps
rsp
rss

 =


p1 s1 0 0
0 0 p1 s1

p2 s2 0 0
0 0 p2 s2


−1 

p′1
s′1
p′2
s′2

 (20)

We shall now distinguish between the analytically de-
termined coefficients from equations (2)-(5) and the ones
inferred from measurements in (20). Let the former be
denoted as functions of the unknowns rij(Q,mx,my,mz)
and the latter as constants r∗ij . The coefficient rss does
not depend on the magnetisation as seen in (5), and so
the measured quantity r∗ss can be used outright to de-
termine n1 from the coefficient formula and Snell’s law
n0 sin θ0 = n1 sin θ1, and upon simplifying the expression,
one ends up with

n1 =
n0

√
1− 2r∗ss cos(2θ0) + (r∗ss)

2√
(r∗ss + 1)

2
. (21)

The denominator cannot be reduced further, because r∗ss
is complex in general. Note that (21) may yield a value
of n1 with an incorrect sign, but it is easy to compensate
for this by checking whether the real part of n1 is positive
(as it physically has to be), and inverting the sign if this
is not the case.

The other unknowns may now be found by solving the
nonlinear set of equations

rij(Q,mx,my,mz) = r∗ij | i, j ∈ {s, p} , (22)

with the constraint that
√
m2
x +m2

y +m2
z = 1, because

the magnetisation vector is a unit vector by definition.
The square root is included to make it clear that it is a
constraint on the norm, although it could be omitted.

Again there are no closed-form solution due to nonlin-
earity, but a nonlinear least squares method can be used
to solve

(Q,mx,my,mz) = arg min
Q,mx,my,mz

∑
i,j∈{s,p}

[(
r∗ij

−rij(Q,mx,my,mz)
)2

+
(√

m2
x +m2

y +m2
z − 1

)2
]
.

(23)

Furthermore, the method should be implemented
such that only Q is assumed to be complex,
while (mx,my,mz) is a real vector. Alterna-
tively, one could replace the last term in the ob-

jective function,
(√

m2
x +m2

y +m2
z − 1

)2

, with the

two terms
(√

Re(mx)2 + Re(my)2 + Re(mz)2 − 1
)2

+(
Im(mx)2 + Im(my)2 + Im(mz)

2
)
, because when each of

these terms are minimised the norm of the real part will
be 1 and the norm of the imaginary part will be 0.

The combined inverse problem. The two inverse
problems have now been treated individually, although
the inverse magnetisation problem relied on the inverse
geometry problem being solved first. A measurement in
the inverse geometry problem will be referred to as a tri-
angulation measurement, because it is related to the angle
of reflections. For the complete inverse problem of first
inferring the geometry and point of incidence followed
by a determination of the magnetisation, one would need
two triangulation measurements for the geometry, as we
have seen, and then measure the final polarisation of two
beams with equal wave vectors but different initial po-
larisation states – thus, a total of four measurements. If
the polarisation was also to be measured in the triangu-
lation part, one of these measurements could be reused in
the magnetisation determination, such that only one new
measurement is needed. In this scheme a total of three
measurements are required. However, an approximation
can be employed in which both triangulation measure-
ments are reused in the determination of the magnetisa-
tion. The premise of this approximation is that if the
points of incidence of the two triangulation beams are
close enough in space, then the magnetisation vectors at
those two positions will not differ significantly and it is
justified to treat them as the same. Hence, depending
on how small changes to the wave vector can be made
while still being significantly distinguishable for the tri-
angulation (i.e. depending on the measurement precision
and associated noise), the scheme can be made to only
use two measurements in total (of final beam position
and polarisation) to determine point of incidence at the
sample, its normal and its magnetisation.

The nonlinear least squares method. There are
multiple possible methods for solving the two nonlinear
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least squares problems. Those employed by MATLAB by
default is the quasi-Newton trust-region method (referred
to as trust-region-reflective) and Levenberg-Marquardt
algorithm. The trust region method has the advantage
of handling bounds, which is helpful since each inverse
problem involves a unit vector: the normal vector and
the magnetisation vector, respectively. Thus in solv-
ing for these quantities we can configure the method
to not look for components that are below -1 or above
1. The two aforementioned algorithms are both New-
ton step-based methods, meaning that they approximate
the objective function by its linearisation based on the
Jacobian (first-order) or potentially the Hessian (second-
order) [22]. That is, for an objective function f that
depends on the parameter vector x, the linearisation
f(x + δx) ≈ f(x) + J δx is used, where J is an esti-
mate of the Jacobian of the objective function. How well
this approximation works, which is to say how quickly the
method converge overall, depends wholly on the objective
function as we shall see in the next section.

3.3 Numerical analysis

A numerical method is said to be consistent if it has an
order p greater than 0 such that the local truncation er-
ror of the nth step is bounded by δhn = O(hp+1), where
h is a discretisation parameter, e.g. step size [23]. Con-
sistency and stability are the two necessary and sufficient
conditions for convergence. Stability analysis is out of the
scope of this work, but the numerical methods suggested
in previous section will now be investigated for consis-
tency and convergence with stability being assumed.

Rather than considering the step size used internally
in the numerical methods, we shall for simplicity consider
the local truncation error as a function of iteration count.
The iteration count of a method is not in general propor-
tional to the step size, but for a consistent method the
step size should monotonically decrease as the iterations
progresses, which is sufficient to show that p > 0.

Figure 9 shows the norm of the objective function
that is minimised (referred to as the error norm) versus
the relative iteration count for executions of the inverse
problem’s respective method. The plot uses a relative
iteration count on the first axes rather than the abso-
lute iteration count, because the latter is hugely different
between the two methods. The method treating the ge-
ometrical inverse problem only 15 iterations to reach the
desired tolerance, whereas inferring the magnetisation re-
quires as much as 236 iterations. This is clearly seen in
the density of data points on each curve.

The absolute iteration count depends on the quality of
the initial guess provided to the solver – i.e. the starting
point of the solver, which is randomly generated in the
implementation, but could potentially be replaced with a
qualified guess if some heuristic was found. Hence, to
demonstrate convergence in a more general sense, the
solution process should be repeated for many different
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Figure 9: Convergence plots of the two nonlinear least
squares methods for the two respective problems of infer-
ring geometry and magnetisation. For the inverse geometry
problem the unknown plane (used to perform a virtual mea-
surement, which is then used to compute ”backwards”) is
defined from the normal n = −(1, 3, 1) and the point in
the plane pn = (4, 3, 3), while the two wave vectors are
k1 = (1, 1, 1) and k2 = (1.5, 1, 1). For the inverse mag-
netisation problem the parameters used are n = (-0.3015,
-0.9045, -0.3015), M = (0.8503, -0.0923, -0.5181), Q =
0.0177 - 0.0063i. Iteration count is 15 and 236 respectively
for the same objective function tolerance of 1e-14.

Figure 10: Histogram of iterations counts for 5000 execu-
tions of the nonlinear least squares methods for the two re-
spective problems of inferring geometry and magnetisation.
For each execution the starting guess is randomly gener-
ated to get a better idea of the general performance of the
method for each problem. Parameters used are as denoted
in 9.

random starting guesses. This has been done with 5000
repetitions of each inverse problem’s method, and the re-
sulting histogram of iteration counts can be seen in figure
10.

The maximum allowed number of iterations was set
to 800, but none of the instances required near as many,
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meaning that all instances converged to the specified ob-
jective function tolerance of 1e-14. As was also indicated
by figure 9, the histograms make it very clear that the
inverse geometry problem is significantly easier to solve
than the inverse magnetisation problem. The reason for
this is simply that the objective function of the inverse
magnetisation problem is less prone to linearisation. As
mentioned in the end of last section, the nonlinear least
squares method uses a Newton step-based approxima-
tion to linearise the objective function. Considering the
objective function of the inverse geometry problem, eq.
(17), it seems clear that it is more suited for linearisa-
tion given that the expression consists of vector product
and vector normalisations. On the other hand the objec-
tive function of the inverse magnetisation problem, eq.
(23), is more convoluted due to the intricate formulae for
the MOKE coefficients, eq. (2) through (5), causing the
objective function to only be crudely approximated by
linearisation, thus requiring more iterations in total for
the method to converge.

4 Experimental detection schemes
In the previous section it has implicitly been assumed
that one can measure the real and imaginary components
of the polarisation state. This is not directly possible
since detectors by default measures intensity, and thus
only the norm square is obtained. There are several ways
in which the ellipticity of the polarisation state (the com-
plex nature) can be addressed however, and in this section
we shall consider some optical components that can help
to that end.

Passive optical components can be described with
Jones calculus. For the detection schemes considered in
the following, we will be needing to describe an arbitrary
angle polariser, or analyser, a polarisation rotator, circu-
lar polarisers and a generalised wave plate. In respective
order these are given by [12]

Tpol(v) =

[
cos2(v) cos(v) sin(v)

cos(v) sin(v) sin2(v)

]
, (24)

Trot(v) =

[
cos(v) − sin(v)
sin(v) cos(v)

]
, (25)

Tcirc,right/left(v) =
1

2

[
1 ±i
∓i 1

]
, (26)

where the signs in Tcirc,right/left should be read from top
to bottom depending on whether a right or left circular
polariser is desired. Finally, for the generalised wave plate
[24]

Twaveplate(v, η) = e
iη
2 ·[

cos2(v) + e−iη sin2(v)
(
1− e−iη

)
sin(v) cos(v)(

1− e−iη
)

sin(v) cos(v) sin2(v) + e−iη cos2(v)

]
,

(27)

where the angle v is the orientation of the fast axis with
respect to the p-axis and η is birefringence, i.e. the phase

retardation induced between the fast and slow axis, η =
φs − φp, which is ±π for a half-wave plate and ±π/2 for
a quarter-wave plate.

Figure 11: Direct detection scheme used in this work, al-
though the polariser and analyser may be replaced by other
components as specified. Figure from [20].

For the remainder of this report the detection scheme
illustrated on figure 11 will be assumed, where the stage
before and after reflection will be allowed to consist of
any combination of the components described above. The
amplifier will not be relevant, since noise sources are not
being modelled and absolute values of the intensities are
troublesome, as argued in the next section. Thus, the
signal from the photodetector will simply be the norm
square of the polarisation state, |Jp|2 + |Js|2, in arbitrary
units.

5 Hysteresis
Ferromagnetic like paramagnetic materials can be mag-
netised, but ferromagnetic materials have the property
that they retain the magnetisation applied by an external
field. This effect of magnetic memory is the cornerstone
in many magnetic applications, e.g. hard drives, and is
referred to as hysteresis1. In characterising a ferromag-
netic material the hysteresis behaviour is often of interest,
which can be quantified via a hysteresis loop. The loop is
generated by observing the magnetisation while linearly
varying the external field through a range of values and
back again to its starting point.

Since MOKE depends heavily on magnetisation, it is
no surprise that hysteresis will be clearly present in a
MOKE signal during the sweep of the external field. How-
ever, the MOKE coefficients as seen in section 2 do not
have a proportional dependence on the respective mag-
netisation components. Hence, while generating a hys-
teresis loop the obtained MOKE signal will in general be
a superposition of the hysteresis loop along each compo-
nent. For that reason a symmetrical magnetic hysteresis
may exhibit an asymmetrical MOKE signal.

In this section we shall consider how to simulate such
MOKE signals given that the hysteresis behaviour of the
magnetic sample is known. The virtual system employed

1However, note that hysteresis is not exclusive to ferromagnetic
ordering – another example being spin glass ordering [25]
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Figure 12: Optical setup to quantify hysteresis loops via
MOKE. The optical components represent different detec-
tion schemes.

is that indicated by 12, in which the external field B is
varied and the optical signal resulting from a particular
detection scheme is continuously measured. The initial
polarisation emitted by the laser can be anything, but is
naturally kept constant through the sweep of the external
field.

5.1 Magnetic data and integration

To simulate a MOKE hysteresis loop it is required that
the magnetic sample’s response to the external field is
known. For a certain material composition the informa-
tion could possibly be obtained experimentally, but al-
ternatively a software package such MuMax [26] can be
used to simulate the material and obtain a numerical ap-
proximation of its hysteresis behaviour.

In the following we shall consider such magnetic sim-
ulation data provided by the TFM Group. The data con-
sists of a sequence of three-dimensional arrays; each array
corresponding to one value of the external magnetic field,
and each data point in the arrays corresponding to one
coordinate in a 3D grid representing the material’s spatial
distribution.

This will be used to compute the MOKE signal that
can then be compared to an experiment performed by the
TFM Group.

The distribution of magnetisation may not be uni-
form, in which case the beam profile might have to be
considered for an accurate description. Additionally, the
material may not be perfectly reflective, and the pen-
etration depth into the material would have to be ac-
counted for. Allowing the beam to penetrate the surface
also opens the possibility of interferometric effects inside
the material, but this will be neglected straight away.
Penetration into materials is typically modelled with the
Beer-Lambert law, which states that the intensity decays
exponentially according to I(z) = I0 exp(−z/z0), where
I0 is the intensity at the surface, z is the depth and z0 is
the characteristic penetration depth [27].

If the spatial beam width is smaller than the length

scale of the sample, a volume integral weighted by beam
intensity could be evaluated to obtain a weighted aver-
age of the magnetisation at the point of incidence of the
beam’s centre, which would be used for the MOKE com-
putation. On the other hand if the spatial beam width
is much larger than the length scale of the sample, then
the effective magnetisation simply becomes the average
magnetisation along each component (along each axis),
because the weighted average effectively has a constant
weight function.

In general the weighted average of magnetisation at a
point p = (x′, y′, z′) would be

M̄(p) =

�

V

M(x, y, z)W (p, x, y)e−z/z0 dS, (28)

where the volume V represents the sample and W (p, x, y)
is the weighting function. The weight function, e.g. a
two-dimensional Gaussian distribution given a Gaussian
beam profile, in which case the centre of the distribu-
tion would be the point p. The formulae (28) assumes
that the sample is aligned with the xy-plane, otherwise a
coordinate system transformation would have to be used.

However, while accounting for beam profile and colli-
mation rather than considering beams may be more ac-
curate, it also adds another layer of complexity to the
computations. Thus, to start with we shall consider that
W (p, x, y, z) = 1. Furthermore, as another simplifica-
tion that could later be undone, we shall assume that the
sample is planar, which makes the surface integral easier.
Given a distribution of magnetisation discretised into a
N ×N grid, the effective magnetisation is

M̄ =
1

N2

N∑
r=1

N∑
c=1

M(r, c). (29)

The MuMax simulation results provided by the TFM
Group are shown in one instant during the variation of the
external field B in figure 13. The corresponding value of
B is 10 mT along the y-axis, which is a relatively small
magnitude since the complete range covers -300 to 300
mT. For the extreme values in this range, the magnetisa-
tion is essentially parallel to the plane in the respective
directions.

A surface integration of this distribution as a function
of the external field magnitude provides the hysteresis
loops along each component shown in figure 14. As seen
the hysteresis loop along the x-component is essentially
zero, while in the other two components there is a sig-
nificant hysteresis of symmetrical and anti-symmetrical
nature.

5.2 Experimental comparison
Having now the magnetic configuration from MuMax
with a way to compute effective magnetisation, and the
ability to implement various detection schemes with op-
tical components described via Jones calculus, it is time
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Figure 13: Snapshot of the magnetic distribution during
the variation of the external field B.
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Figure 14: Hysteresis loops provided by a magnetic simu-
lation in the software MuMax.

to consider results and compare them with correspond-
ing experimental results provided by the supervisor of
this project, whom has fabricated the sample and per-
formed the measurements. The material investigated is
a multilayer Co/CoFeB structure described further in
[28]. The physical parameters used in computations how-
ever will be those of Co/Cu – n1 = 1.58 + 3.58i and
Q = 0.01772 − 0.0063i. The angle of incidence in the
experiment was estimated to be 30 degrees.

The complex Kerr angle φk with Kerr rotation θk and
ellipticity εk is defined as [1]

φk,s = θk,s + iεk,s =
rps
rss

and φk,p = θk,p + iεk,p =
rsp
rpp

.

(30)

The coefficient rss does not depend on magnetisation, and
rpp only depends on the magnetisation for the transverse
MOKE, which is generally much weaker experimentally.
Hence, the coefficients rpp and rss are essentially expected
to both be constant when varying the external field, such
that only the coefficients rps and rsp are important for the
change in polarisation as a function of magnetisation.

The MOKE signal will in general be a linear com-
bination of the coefficients and the polarisation before
reflection. While it will not be possible to measure upon

the two variants of the complex Kerr angle given by (30)
directly, as the signal will be a mixture of the coefficients,
the Kerr rotation and ellipticity will still be addressed, re-
spectively, i.e. the real and imaginary parts of the mixed
rotation.

For the virtual measurements it is assumed that the
initial polarisation is at a plus or minus 45 degree angle
in the ps-plane. A sign change of the polarisation angle
will just mirror the resulting signal in an axis, and will
not change the qualitative variation.

For a measurement of the Kerr ellipticity a quarter
wave plate is needed to make the incident polarisation
complex, causing the polarisation change of the imagi-
nary part to be more significant in the measured signal.
The resulting signal versus the experimentally obtained
signal is shown in figure 15. The scaling on the secondary
axis is arbitrary, because it depends on many unknown
parameters in the experimental setup – not only may
there be multiple sources of loss during propagation and
imperfect alignment, but the exact operation of the de-
tector (as in internal resistance etc.) would have to be
understood.

Clearly there is a qualitative agreement between the
curves; the asymptotes have similar slope and the asymp-
totic flatness roughly coincides between -50 and 0 mT
in case of the negative asymptote, although the positive
asymptote is a bit off as the flatness also occurs between
-50 and 0 mT for the experimental signal, whereas the
numerical signal is complete symmetrical and starts be-
ing visibly flat between 0 and 50 mT. This bi as between
the signals is not unexpected and will be addressed later
in this section.
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Figure 15: Comparison with experimental ellipticity mea-
surement. The corresponding optical setup consists of a
quarter wave plate with a 90 degree angle of the fast axis
w.r.t. the p axis, and an analyser at 45 degrees with the p
axis.

To measure the Kerr rotation only an analyser at 0 de-
grees after reflection is needed. The resulting signal ver-
sus the experimentally obtained signal is shown in figure
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16. Again, there is a reasonable qualitative agreement.
The slope of the right tail seem a bit off, but the same
kind of asymmetry is present in both signals. This asym-
metry is due to the above-mentioned mixture of coeffi-
cients, which effectively results in a linear combination of
the hysteresis loops shown in figure 14 – additively com-
bining a fraction of the antisymmetric my signal with the
symmetric mz signal yields an asymmetric signal.
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Figure 16: Comparison with experimental rotation mea-
surement. The corresponding optical setup consists only of
an analyser at 0 degrees with the p axis.

However, there is also a clear bias again; a shift of the
experimental signal towards the left. The bias in both
cases is presumed to be due to noncollinear quantum ex-
change interaction known as Dzyaloshinskii-Moriya inter-
action as described in [29, 30]. This type of interaction is
known to be able to cause a phenomenon called exchange
bias [31], in which a ferromagnetic film can have its mag-
netisation curve shifted due to the presence of layers with
other ordering.

6 API and GUI

One of the end goals of the computational study of this
project has been to wrap the implementations into an
API (application programming interface) to be used for
MOKE computations by others, in particular those of the
TFM Group. The main use case is to be able to probe
a magnetic sample of known magnetisation (for instance
the data obtained from a MuMax simulation) in order
to generate a prediction of the associated MOKE signal
under various optical conditions that the user can specify.

A front-end to the API has also been desired to make
it more quick and accessible to use. The GUI (graphical
user interface) presents the results, but also allows pars-
ing and specification of the data and parameters stated
above. The GUI can be seen in figure 17.

Magnetisation data. The parsing of the magnetisa-
tion data is specified through the textfield in the upper

left, where a path of a MuMax folder or a textfile (un-
compressed data file) is put.

If the path of a MuMax folder is provided, a sequence
of files is expected. Each file must correspond to a certain
value of the external field and have a filename according
to * *.ovf – the first wild star character can be anything,
but the second should contain a number representing the
external field magnitude, e.g. * 150mT.ovf. The .ovf
file extension is the default type used by MuMax. Upon
pressing load all the .ovf files will be processed, and the
summation corresponding to a planar surface integration
with constant weight function, eq. (29), is performed by
the program. The magnetisation averages appears in the
three right-most columns underneath the path textfield
in the GUI, while the leftmost of the four columns shows
the magnitude of the external field derived from the file-
names. The values of the magnetic component averages
are then plotted against the external field magnitude and
shown in the three plots in the bottom-left of the GUI
– these graphs are similar to those shown previously in
figure 14 (note that the plot for m̄x, titled B vs Mx, has
an axis scaled by 10−11 and is therefore still essentially
zero).

The other way to parse magnetisation data via the
textfile assumes that the magnetisation component av-
erages have been precomputed and are given directly in
a table following a delimiter-separated textfile specify-
ing with each row specifying a magnitude of the external
magnetic field and then the three component averages
m̄x, m̄y and m̄z. The provided file can be with extension
.txt, .csv or .dat, and it may use any standard type of
delimiter and have any number of header lines.

Finally, the aforementioned four columns are editable
and so the component averages can also manually be pro-
vided by typing or copy-pasting into these textfields. Af-
ter values have been provided this way, the update button
in the lower left must be pressed to have the data plotted
in the bottom three figures.

Physical parameters. Before computations can be
performed, the rubric with ”Physical parameters” must
be filled. The two refractive indices must be provided,
and the MO constant, Q, and finally the incidence angle
Theta in degrees. There are also three standard mate-
rial compositions that can be chosen causing the fields to
be auto-filled with corresponding values, namely Co/Cu,
Co/Pd and permalloy.

If the user wishes to do the simulation in a 3D set-
ting, according to the computations of section 2.2, the
two fields in the bottom of the rubric can be filled, i.e.
the normal vector of the sample n and the incident wave
vector k. Those values will overrule whatever is specified
in the field for Theta. The angle of incident implied by
the normal vector and wave vector will be output to the
user in the output field in the lower-right of the GUI once
a computation is performed.
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Figure 17: GUI to access the functionality of the developed API.

Optical components. To provide flexibility in having
different means of preparation and detection of the in-
cident and reflected polarisation state, respectively, the
rubric to the right in the GUI allows for specifying var-
ious optical components before and/or after reflection.
The components are those described in section 4, and
their corresponding functions in the API can be selected
with the dropdown menu in the top of the rubric. After
selection the user can add the component by pressing the
Add button, and depending on the toggles just below the
dropdown menu, the component will be added to either
the ”Before reflection” or the ”After reflection” textfield
in the rubric. These textfields need to be manually edited
to input arguments to the commands, which are either in
units of degrees or radians. In the screenshot of figure 17
the ”Before reflection” textfield show examples of com-
mands whose argument has not yet been input, whereas
the ”After reflection” textfield show commands that have
been edited. The only commands taking two arguments
is the Waveplate, since one can both specify the angle of
the fast axis relative to the p-axis (in degrees) and the
birefringence (in radians).

Computation. After having considered all types of
user input, the computation can be initiated with the
Compute MOKE button, which spawns a new panel,
which can be seen in appendix A. This new panel shows
the predicted MOKE signal. The panel also features a
slider that can be used to go through each calculated
MOKE data point, which then updates three plots of po-
larisation in the panel. These three plots respectively

show the polarisation right before reflection (i.e. after
the initial beam has passed through the ”Before reflec-
tion” components but has not reached the sample yet),
right after reflection (i.e. before the reflected beam passes
through the ”After reflection” components) and at the
point of detection (i.e. after the reflected beam passes
through the ”After reflection” components).

Finally, in the main GUI pane the button ”Plot co-
efficients”, gives the option to spawn another pane for
computing and visualising the real and imaginary parts
of the MOKE Fresnel coefficients from section 2 based on
the provided input. This pane is also shown in appendix
A.

7 Outlook
There are several things that would be interesting to pur-
sue as the next steps to take this project further. Some
of them are:

• Use beam profile of the laser beam, e.g. a Gaussian
beam, to compute a weighted magnetisation average.

• Account for penetration of the beam into the sam-
ple, i.e. perform the full volume integral. (28) rather
than a surface integral, which would alter the effec-
tive magnetisation.

• Consider interferometric effects that may occurr due
to the penetration of the sample.

• Implement a scanning MOKE algorithm to system-
atically perform imaging and magnetic characterisa-
tion of a 3D object.
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• Include noise sources to make computations more
realistic and study robustness of the inverse problem
methods in the presence of noise.

• Allow multiple separate structures to be present on
the sample and consider the effect of occlusion and
multiple reflections – essentially doing what is known
as ray tracing in computer graphics.

• Evaluate the importance of quantum exchange inter-
actions and whether it would be possible to extend
the computations with a model for this.

Some work has been put into treating the beam pro-
file, which will be elaborated briefly in the following. Fur-
thermore, the next desired milestone, given a continua-
tion of the project, which includes some of the points
above will also be described.

Gaussian beam integration As was described in sec-
tion 5, the MOKE computation performed so far have
assumed that the spatial beam width of the laser in use
is much larger than the length scale of the sample. If this
was not the case, the effective magnetisation would have
to be evaluated by the surface integral corresponding to
(28) – under the assumption that the surface is perfectly
reflective, otherwise it becomes a volume integral.

A Gaussian beam have several beam parameters:
beam waist, depth of focus (or alternatively defined
via the Rayleigh range) and beam divergence (angular
spread) [12]. A thorough treatment of a Gaussian beam
laser would incorporate all these parameters, but for now
we shall assume that the Gaussian beam is collimated,
which corresponds to the Rayleigh range being much
larger than the propagation distance.

Given a Gaussian beam with a certain wave vector in
space that is incident on the sample, the question is then
how the Gaussian intensity distribution will look like on
the surface of the sample. Let the sample be planar as
before. It is clear that for oblique angles of incidence, the
transformation of the Gaussian distribution should cause
a distortion along the axes of the sample plane, which
in general results in an asymmetric distribution. This
projection of the distribution depends on the wave vector,
k, and the sample plane normal n. If h is a point in a
cross-section of the beam somewhere in space before the
incidence with the sample, a straight-forward projection
onto the plane is given by

pproj,n(h) = h− (h · n)n, (31)

assuming n is normalised. Although this point lies in the
sample plane, it is not in the correct position, because the
corresponding ray in the beam would have propagated
further along the direction of k before being incident at
the plane. Hence, it is necessary to project along the
direction of k, but replacing n by k in (31) does not
produce a projected point, because the factor h ·k would

not correspond to the correct distance between h and
the plane. The correct factor is found by extruding by
an unknown amount from the point h along n onto the
plane and solving for the distance, say x, i.e.

(h + xk− p) · n = 0⇔ x =
p · n− h · n

k · n
, (32)

where p is any point in the sample plane, because both
a position and a normal is needed to uniquely define a
plane in space.

The projection of the point h is then given by

pproj,k(h) = h +
p · n− h · n

k · n
. (33)

Apart from projecting the distribution, there is also an
overall factor that is needed to scale the beam intensity
at the sample plane. This factor is given by |k · n|, and
it can be derived by calculating how the length scales
are projected via (33). Clearly, the intensity mapping is
one-to-one, when the incidence is perpendicular as one
would expect, and the more shallow the incidence, the
more spread out the beam becomes, causing this factor
to approach zero.

An example of this projection transformation in prac-
tice is shown on figure 18 for a system seen from two
different directions. The height profiles of the Gaussian
distributions have no geometrical significance; they are
only included to emphasise the distortion of the distribu-
tion, since the colour coding is not very clear due to the
beam being spread out on the projection plane.

After projection and scaling the surface integral can
be evaluated numerically by a weighted double sum, akin

Figure 18: Example projection of a Gaussian beam profile
onto an arbitrary planar sample in space. The parameters
used are n = (1, 0,−7) (normalised), k = (−1, 0, 1/3) (nor-
malised) and p = (5, 0,−1). The intensity scaling factor is
|k · n| = 0.45.
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to (29), to find the effective magnetisation, where the
weights are simply the projected Gaussian beam intensi-
ties at their corresponding positions in the sample plane.

Scanning MOKE After having fully implemented the
Gaussian beam surface integration, and possibly the vol-
ume integration if material penetration is assumed, the
next major milestone in a continuation of the project
would be to implement a scanning algorithm to do imag-
ing of the complete sample. The sample surface could be
curved, in which case some 3D reconstructing would be
required when using the technique of discretising a gen-
eral 3D shape into planes as described in section (2.2).
The sample could also be consisting of several smaller
structures, for instance planes situated around a sub-
strate like the experimentally realised scaffold in figure 2.
In both cases a scanning of the complete sample would
be necessary to fully characterise it, magnetically and ge-
ometrically.

Figure 19: Next milestone in a continuation of the project.
Beam profile is accounted for, and a scanning of the com-
plete sample is done to finally produce an image of the ge-
ometry and magnetisation.

The envisioned implementation of this milestone is
summarised by figure 19. In this implementation the
Gaussian beam profile is taken into account, a path to
sweep systematically sweep the sample is defined, and
a subsequent reconstruction of the magnetic distribution
and geometric layout is finally computed.

8 Conclusion
The theory behind oblique MOKE has been reviewed. An
overview of some of the confusion in the literature has
been obtained; not only of the different sign conventions
and coordinate system definitions, but of several mistakes
and typos that in one case survived through papers from
multiple authors.

The theory has been further extended to a 3D setting,
such that computations can be done for generalised con-
figurations in 3D space. This 3D extension formed the
foundation in which the so-called inverse problems could
be treated, namely the problems of inferring both the
sample’s geometry and magnetisation only by probing it
with beams from a distance. The inverse geometry prob-
lem was found to be solvable with two beams that have

slightly different initial positions or initial wave vectors
assuming that the reflected beams can be located. This
procedure leads to a system of 10 nonlinear equations and
9 unknowns, and a numerical method to solve it has been
proposed. The inverse magnetisation problem was found
to be solvable with two beams that have different initial
polarisation states, but also requires the geometry to be
known, and so a succession of the schemes would be re-
quired, in which case a total of three beams would suffice,
since one of the two beams used for the inverse geome-
try problem can be reused. The scheme for the inverse
magnetisation problem leads to a system of 6 nonlinear
equations and 5 unknowns, and again a numerical method
has been proposed.

The numerical method of choice is a nonlinear least
squares method based on a trust region algorithm, which
is able to handle parameter bounds contrary to the
common Newton step-based Levenberg-Marquardt algo-
rithm. The numerical method has been demonstrated to
be consistent, i.e. exhibits convergence when numerical
stability is assumed, for a vast number of random start-
ing guesses within the bounds. A significant performance
gap was found between the two inverse problems’ meth-
ods, and the difference has been ascribed to how well each
objective function is approximated by a linearisation.

Using MOKE for characterising hysteresis in simu-
lations has been covered, and predictions given a spe-
cific distribution of magnetisation have been computed
and compared to experimentally obtained measurements.
The beam profile and material penetration was neglected,
which is only a valid approximation if the beam width is
much larger than the length scale of the sample, or if
the magnetisation is relatively uniform throughout the
sample. The magnetisation data used to represent the
sample of the experiment was obtained from the sim-
ulation software MuMax, provided by supervisor. The
magnetisation according to this simulation was indeed
found to be relatively uniform, and so the approxima-
tions may not be so crude. The predictions also turned
out to agree reasonably well with the experimental mea-
surements. Important features occurred in both the nu-
merical and experimental signals; the general symmetry
of the ellipticity measurement was consistent, and a cer-
tain asymmetry in the rotation measurement was also
observed in both. However, a non-reproducible bias was
found for both measurements, which is expected to be a
well-known phenomenon called exchange bias caused by
noncollinear quantum exchange interaction.

Some of the implementations developed during this
project have been put into an API and a GUI has been
designed as a front-end. It is the hope that this tool
for generalised 3D MOKE computations and hysteresis
simulations may be of use to researchers in the field. The
tool has been briefly documented in the report.

There are many next steps that could be taken in a
continuation of the project, some of which have been de-
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scribed. Firstly, it would be worthwhile to consider com-
putations that account for beam profiles. Some effort has
been put into treating a Gaussian beam profile in a 3D
setting. The transformation of a Gaussian beam inten-
sity distribution onto an oblique plane has been derived,
which makes it possible to find the effective magnetisa-
tion with a weighted surface integral. However, while
the transformation and integration have been done, no
MOKE computations with Gaussian beams have been
done, and one of the next objectives would be to do just
that. The next major milestone would be to have a scan-
ning algorithm to perform imaging and magnetic char-
acterisation of a complete sample possibly with a non-
planar geometry and assuming a Gaussian beam.
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Appendices

A Assisting GUI panes
Figure 20 shows two panes that are brought forth by pressing the ”Compute MOKE” or ”Plot coefficients” buttons,
respectively, in the main interface.

Figure 20: (Upper GUI pane) Visualisation of a MOKE signal hysteresis loop with a slider to go through each calculated
MOKE data point (current selection indicated by the red circle in the main plot), which updates the three polarisation plots
in the right. (Lower GUI pane) Plots of the MOKE coefficients based on a specified magnetisation vector (components
Mx, My, Mz) and the other physical parameters provided in the main GUI pane.

C. N. Christensen Sensor CDT | Mini research project | 18


