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Abstract

In this thesis we investigate the quantum Zeno effect (QZE). We try to clarify the confu-
sion around the definition of the QZE. We find that its physical appearance shall not be
regarded as caused by frequent collapses of a system due to measurements, but rather as
a general effect obtained whenever a system is dominated by strong disturbances. Many
different manifestations of the QZE will be studied both analytically and numerically –
including a simplified version of the experiment of Itano et al. [1]. This will be done
using the Lindblad formalism and a more rigorous approach based on derivation of the
Born-Markov master equations from first principles.
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Chapter 1

Introduction

The quantum Zeno Effect (QZE, henceforth) is a phenomenon usually understood as a
’damping’ effect that slows down or eventually freezes the evolution of a quantum sys-
tem due to frequent measurements performed on it, thereby (hindering the transition out
of the initial state) preventing its decay. The phenomenon has been marked by a lot
of controversy and confusion ever since it became popularized by George Sudarshan and
Baidyanath Misra in 1977 [2]. The controversy originates form the physical manifesta-
tion of the QZE, since it seems to require the collapse of the quantum state, which is
a concept not universally agreed on in the scientific community. Nowadays the QZE is
however pictured in a much broader context by most physicists. Its physical manifestation
is reformulated as an effect that appears whenever a strong disturbance or perturbation
dominates the dynamics of a quantum system.

The primary goal of this thesis is to clarify the confusion that is around the definition of
the QZE, and describe it as being a more general effect that physically appears whenever a
system is dominated by strong disturbances, while it theoretically also can be understood
through the collapse of the wave function – even though this conjecture never has been
experimentally proven. We will start off by studying the QZE in quantum dots influenced
by frequent measurements - describing the general QZE definition. Thereafter we will
consider quantum dots influenced by different types of environments, which lead to both
spontaneous emission and pure dephasing of the quantum dot. This will be done using
the theoretical well-established Lindlad master equation and also through a more rigorous
approach based on a derivation of the Born-Markov master equation from first principles.

1.1 Quantum dots

Quantum dots have been extensively studied in recent years because of their potential
for technological applications. Briefly stated a quantum dot (QD) is a portion of matter
whose excitons are confined in all three spatial dimensions. This means that an electron
that is in the interior of a QD will experience a potential barrier in all directions [3].
The dimensions of QDs usually range from 1 nm to 20 nm. They can be fabricated from
many different kinds of semiconductor materials and in various geometrical shapes (cubes,
spheres and cones for instance). All these opportunities can be utilized to achieve certain
desirable properties of the QD – for example, by varying the size appropriately a QD can
be produced with a very specific band gap making them ideal for optical applications,
where a certain wavelength of light is desired. In fact for laser applications QDs have such
potential that a whole field of research on quantum dot lasers have emerged.



2 1 Introduction

(a) (b)

Figure 1.1: (a) Schematically depiction of the four steps in the process of QDs formation in Stran-
ski–Krastanow regime. (b) 3-D STM (scanning Tunnel Microscope) image of InAs QDs on GaAs
[4].

The fabrication of QDs have gone through various phases since its initial discovery in
the late 70’s and early 80’s, including lithographic processes that create two-dimensional
structures that could then be etched down to isolate the dot [5]. However a newer method
that is usually the one used for lasers is to grow self-assembling dots by growing a layer
of semiconductor material unto a wetting layer. The growth of quantum dots is based
on a mismatch of lattice- and surface energy parameters that causes strain in material,
which then pulls together resulting in “islands” of quantum dots. This is also known as
Stranski-Krastanov growth, see figure 1.1a. The main limitations of growing quantum dots
this way are the cost of fabrication and the lack of control over positioning of individual
dots, however significant efforts has been made to enable control of the dot size [6] [7].
Self-assembled dots are typically between 5 and 50 nm in size. By carefully choosing the
semiconductor material, there is a high degree of control over the band gap and therefore
the operational frequency of quantum dot laser.

QDs are sometimes called artificial atoms, because they exhibit behavior very similar
to that of atoms. Hence, QDs are a platform that are relatively representative of general
quantum mechanical behavior, while they are also very likely to be incorporated in various
future technologies; e.g. quantum computing gates [8] for which the QZE may be essential
(see sec. 1.2). Due to this we have chosen to base our calculations on QD systems
exclusively. As such we will tend to use parameters in our calculations that are appropriate
for typical QDs.

1.2 Quantum computers

Quantum computers are expected to rely heavily on the undisturbed evolution of quantum
coherences. Hence, to perform a quantum computation it is required that decoherence (see
sec. 2.4.2) is managed such that coherent states are preserved. However, there has yet to
be found a reliable way to avoid decoherence. Isolating the system of qubits in a quantum
computer, while stile being able to handle instructions etc., seems to be a difficult task
[9] – especially when adding more qubits to the system in order to increase computation
power.

It may be possible that the QZE, in one the manifestations investigated in this thesis, can
be used to manage decoherence in quantum computers.
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1.3 The history of QZE

The QZE has a history that dates back to the early 1930s, when von Neumann first en-
countered and understood the central aspects of QZE [10]. He proved that a quantum state
|φ〉 can evolve into any other quantum state |ψ〉 by appropriate measurements and if these
states coincide they could yield the effect known today as QZE. However, his conclusions
were forgotten for over 30 years, when Beskow and Nilsson in an article [11] describing a
measurement experiment, discussed the possibility that frequent position measurements
could hinder the decay of an unstable particle. This intriguing idea drew a lot of attention
that among other things lead to a mathematical perspective on the effect by Friedman
in 1972 [12]. The effect became known as the QZE, when G. Sudarshan in collaboration
with B. Misra in 1977 cast the problem into a more rigorous mathematical framework and
associated the effect with the philosopher Zeno of Elea. Ever since this article, the QZE
has been receiving constant attention by the scientific community that has explored many
different aspects of the phenomenon.

The QZE was genuinely considered a paradox until 1988 when the theorist Cook [13]
claimed that the QZE could be tested experimentally on oscillating systems, which even-
tually led to the first experiment done on the QZE performed by Itano et al. in 1989
[1]. This experiment among others lead to a huge debate concerning the interpretation
of the experimental results, since many suggested that it proved the so-called reduction-
postulate1, which is not a universally accepted postulate among the different interpreta-
tions of quantum mechanics, e.g. the ensemble interpretation. The controversy of the
experimental results has since been debated by a number of authors [14][15], who empha-
size that the measurement processes in the experiments hinge upon unitary dynamics of
the system with no explicit use of projection operators and non-unitary dynamics.

1The reduction postulate states that measurements causes a collapse (reduction) of the wave function.



Chapter 2

Basic quantum mechanics

2.1 Quantum state

The foundation of the mathematical description of quantum mechanics revolves around
postulates that are experimentally established. The first essential postulate concerns the
description of the quantum systems. It states that all quantum systems have an associated
Hilbert space, which is a vector space containing all physical states of the system. The
quantum state is a vector in the Hilbert space that completely describes the state of the
system and is therefore usually called the state vector. The most simple case is a state
vector that describes a two-level system, which potentially could be a two-level quantum
dot, with one excited and a ground state. The Hilbert space for this system is two
dimensional and the general description of the state vector in ”bra-ket” notation, is given
by:

|Ψ〉 = a |g〉+ b |e〉 , (2.1)

where the ground state |g〉 and the excited state |e〉 are orthogonal basis vectors of the
Hilbert space and the coefficients a and b are arbitrary constants. The normalization
condition is 〈Ψ|Ψ〉 = 1, where 〈Ψ| = (|Ψ〉)†. This condition is the same as requiring
|a|2 + |b|2 = 1, so that |Ψ〉 has unit length. |a|2 and |b|2 represent the probability of
measuring the eigenvalue of respectively |a〉 or |b〉 with respect to a given observable. The
state vector given above is called a pure state. More generally a quantum state for a
system can either be pure or mixed, but the mixed description, can only be represented
through the density operator, which will be thoroughly discussed in the following.

2.2 Evolution of closed systems

The general description of a closed system is that the system can be completely be de-
scribed in terms of the time-dependent Hamiltonian, even though the system is not com-
pletely isolated from environmental influence. Such systems could for example be the
evolution of particles subjected to time varying electric or magnetic fields. The evolution
of the state |ψ(t)〉 of the system is postulated to be described by the Schrödinger equation:

i
d |Ψ〉
dt

= H(t) |Ψ〉 (2.2)

where the operator H(t) is the time-dependent Hamiltonian of the system, which is a
Hermitian operator. It has the formal solution given by:

|Ψ(t)〉 = U(t, t0) |Ψ(t0)〉 = e
−i
∫ t
t0
H(s)ds |Ψ(t0)〉 (2.3)
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with U(t, t0) being the unitary time evolution operator. This is an important feature
of the closed system: the time evolution is always unitary. The same goes for totally
isolated systems, where the Hamiltonian is not influenced by some external environment
and therefore is time independent, H(t) = H. An example of an isolated system is an
atom in free space, and the unitary operator governing the evolution state reduces into
the simpler form:

U(t, t0) = e−iH(t−t0) (2.4)

2.2.1 Evolution with density operator

Alternatively the Schrödinger equation can be represented through the density operator
ρ(t), instead of the pure state |ψ(t)〉. The density operator with {pn} being the probabil-
ities and {|Ψn(t)〉} an ensemble of states, is given by:

ρ(t) =
∑
n

pn |Ψn(t)〉 〈Ψn(t)| (2.5)

Only if pn = 1 for some n and every other pn = 0, then the density operator ρ(t) is said to
be in a pure state, since we have complete knowledge about the system, meaning that we
know exactly which state the system is in. If any other pn is different from zero the state
is said to be mixed, since we then only have partial knowledge of which state the system is
in. This representation of the state of the system therefore reaches way beyond the state
representation (2.1), since the density operator implicitly describes both the mixed and
the pure states. The Schrödinger equation with respect to the density operator is given
by:

dρ(t)

dt
= −i [H(t), ρ(t)] (2.6)

This equation is generally known as the Liouville Neumann equation and for closed system
the solution to it is unitary:

ρ(t) = U(t, t0)ρ(t0)U †(t, t0) (2.7)

Where ρ(t0) is the initial density operator.

Before going any further we state a couple of properties of the density operator:

� Tr(ρ) = 1

� ρ = ρ†

� For pure states: ρ2 = ρ⇒ Tr
(
ρ2
)

= Tr (ρ) = 1

� For mixed states: Tr
(
ρ2
)
< Tr (ρ) = 1

� The expectation value of a random operator A, is the weighted average value of its
observable. It can be derived from the density operator:

〈A〉 = Tr (Aρ) (2.8)
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2.3 Composite systems

A composite system is one involving two or more noninteracting subsystems, which act in
different Hilbert spaces. The state space of such system is postulated to be constructed as
the tensor product of the different state spaces of the subsystems. If for example the first
system is in state |ψ〉A and the second in state |φ〉B, the state of the composite system
is given by |ψ〉A ⊗ |φ〉B. In this notation an operator relating exclusively to component

1 is denoted A
(1)
i = Ai ⊗ I, and one relating exclusively to component 2 is denoted as

B
(2)
j = I⊗Bj . The shorthand notation of the composite system is: |ψ〉A⊗|φ〉B = |ψ〉 |φ〉. In

considering noninteracting subsystems like this, it is possible to only look at the dynamics
of one subsystem by tracing out the unwanted subsystems. This procedure is called partial
trace, and is given by: ρA = TrB (ρtotal).

2.4 Measurement

Measurements are described by measurement operators defined by the measurement basis.
If |a〉 is a vector in the measurement basis with the eigenvalue λa with respect to a given
observable, its associated measurement operator is Ma = |a〉 〈a|. This operator is also
known as a projector, because finding the expectation value of this operator corresponds
to projecting the state, |ψ〉 or ρ, onto |a〉, whereby we find the magnitude of this component
in the state. This magnitude is the probability that a measurement will have λa as an
outcome. Thus,

p(λa) = 〈ψ|Ma |ψ〉 or p(λa) = Tr(Maρ), (2.9)

where the expectation value to the right is based on the density operator description of a
state.

Depending on the interpretation that is adopted the idea of one particular outcome of a
single measurement may not be meaningful1, but in any case (2.9) describes the ratio of
λa in a number of repeated measurements on the same system.

Whether the system changes as a direct consequence of having performed a measure-
ment is debated; several interpretations (e.g. the Copenhagen interpretation) support this
idea[16], called the observer effect, while other interpretations (e.g. the ensemble interpre-
tation) are against this. In the Copenhagen interpretation it is assumed that the observer
effect results in a wave function collapse – this assumption is known as the von Neumann
projection postulate or the reduction postulate, which is discussed further in the following.

2.4.1 Von Neumann projections

Von Neumann’s projection postulate states that the act of measurement leads to a non-
unitary change of the state and hence is in complete contrast to the unitary dynamics of
quantum mechanics predicted by the Schrödinger equation. This change is described as
either a strong or weak von Neumann projection[17].

� The strong von Neumann projection describes the wave function collapse as a
projection of the state into a single one of its basis vectors. Let an observable have
eigenvalues ai with corresponding eigenvectors |ai〉, and assume the outcome of a

1E.g. the ensemble interpretation in which the wave function does not apply to a single experiment,
i.e. a single measurement, but rather an ensemble.
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measurement yields an, then the state vector |ψ〉 undergoes the following discontin-
uous evolution

|ψ〉 =
∑
i

ci |ai〉 → |an〉 . (2.10)

� The weak von Neumann projection regards all the possible measurement out-
comes and collapses the state into a mixed state of the corresponding eigenvectors,
namely

|ψ〉 =
∑
i

ci |ai〉 → ρ =
∑
i

|ci|2 |ai〉 〈ai| , (2.11)

where the density operator ρ is required to describe the non-pure state.

In this thesis we will tend to use both kinds of projections, when considering wave function
collapses.

2.4.2 Decoherence

Decoherence is a description of loss of phase difference between the states of the system,
i.e. dephasing, due to the entanglement between a system and its environment. It does
not generate actual wave function collapse, but provides an explanation for the transition
of the system to a mixture of states corresponding to those states observers perceive[18].

Decoherence can be thought of as the loss of information from a system into the envi-
ronment. Hence, when considered alone the system’s dynamics are non-unitary, but the
combined system plus environment evolves in a unitary fashion.

Loss of coherence in a state means that the quantum superposition of components is de-
stroyed, and thus decoherence can be used to explain thought experiments like Schrödinger’s
cat or Wigner’s friend [19]. At the same time decoherence poses a challenge for quantum
computers due to the reasons discussed in the sec. 1.2.

2.5 Open systems

An open system is characterized as a system influenced by some external environment.
The dynamics of such systems are fundamentally different from the deterministic dynam-
ics of closed systems. Open systems are stochastic in nature, which comes from the fact
that the state does not only evolve according to its own internal dynamics, but is affected
by the dynamics of the environment. The interaction of the system with the environment
introduces decoherence, which makes the state of the system more mixed.

Because of the state mixing of an open system, it is necessary to characterize it through
the density operator instead of the state vector, since it describes both the mixed and pure
states. Furthermore, the environmental influence on the system means that the evolution
of the system is generally not unitary, which makes it a difficult task to solve the dynamics
of the Hamiltonian. The state dynamics becomes extremely dependent on the system and
on the environmental influence under consideration. Its necessary to derive a so-called
master equation representing the dynamics of the reduced density operator, given by the
partial trace over the environment: ρs(t) = Tre (ρ(t)), which leaves us with the dynamics
of the system. The reason why this reduced density operator represents the dynamics of
the system, is because the system and environment are considered distinguishable, such
that the full Hilbert space is given by the tensor product: H = HS⊗HE . This means that
the reduced density operator describes everything about the system and nothing about
the environment, because it gets traced out.
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2.5.1 Born-Markov master equation

Everything discussed so far can now be put together to derive a master equation describing
the dynamics of an system influenced by some external environment. More specifically
we are going to derive the so-called weak-coupling Born-Markov master equation, which
describes the time-evolution of the system operator when weak dissapative and decohering
effects of the environment is being considered. The primary approximation for this master
equation is thus that the environmental interaction with the system is weak. The Born-
Markov master equation is one of the best candidates describing the intrinsic spontaneous
emission and pure dephasing of an open system, which we are going to use later in this
thesis.

First we need to write out the full Hamiltonian that we are considering:

H = HS +HE +HI (2.12)

where the first and second term is the Hamiltonian for respectively the system and the
environment, and the last term is an interaction Hamiltonian that describes the coupling
between the system and the environment and their degrees of freedom. One crucial part
of the derivation of the master equation is the use of the interaction picture. This picture
removes the contribution of the system-environment Hamiltonian (HS +HE) by a unitary
transformation on the density operator and the interaction Hamiltonian HI . This is done
because generally the evolution of HS and HE is simple to solve, but the evolution of the
interaction Hamiltonian HI is complicated and needs to be approximated. More explicitly,
the interaction Hamiltonian becomes:

H̃I = ei(HS+HE)(t−t0)HIe
−i(HS+HE)(t−t0) (2.13)

The tilde represents operators that are transformed into the interaction picture. The
assumption is that the system and environment combined, define the total system and is
therefore closed. This means, according to the general description of closed systems that
within the interaction picture, the density operator of the total system satisfies:

∂ρ̃(t)

∂t
= −i

[
H̃I(t), ρ̃(t)

]
(2.14)

with the formal solution:

ρ̃(t) = ρ̃(t0)− i
∫ t

t0

[
H̃I(s), ρ̃(s)

]
ds (2.15)

If this solution is substituted back into (2.14) and the trace is taken over the environment,
we then get:

∂ρ̃S(t)

∂t
= −iTrE

([
H̃I(t), ρ(0)

])
−
∫ t

0
TrE

([
H̃I(t),

[
H̃I(s), ρ̃(s)

]])
ds (2.16)

where we have set t0 equal to zero. We have now derived an equation that describes the
dynamics of the reduced density operator ρS(t), which we would like to calculate. The
equation is put into a convenient form that let us make some appropriate approximations
in order to simplify the equation.

2.5.1.1 Approximation

� Born approximation: We assume that the total density operator can be factorized
into its system and environment components at all times:

ρ̃(t) ≈ ρ̃S(t)⊗ ρE
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where it is assumed that the environmental density operator ρE is time-independent.
The foundation of this approximation relies on the weak coupling strength between
the system and environment, so that their corresponding density operators do not
become substantially entangled. The approximation therefore relies on systems that
do not influence the environment, which thus stay practically unaffected and static.
After this approximation the master equation takes the form:

∂ρ̃S(t)

∂t
= −

∫ t

0
TrE

[
H̃I(t),

[
H̃I(s), ρ̃S(s)⊗ ρE

]]
ds

where we have set TrE

[
H̃I(t), ρ(0)

]
= 0, since this can be ensured by absorbing it

into the system Hamiltonian HS .

� Markov Approximation: The complexity of the master equation is further re-
duced by bringing the equation into a time local form, such that the dynamics of the
system density operator ρ̃S only depends on its present state and not past history
through the integration over ρ̃S(s). The approximations in the Markov approxima-
tion are as follows:

– ρ̃S(s) gets replaced with ρ̃S(t), thereby making it independent on its past history
since its not longer part of the integral. The validity of this approximation is
justified, if the environment memory time, which is the time over which the
environment remembers the past system states, is short in comparison to the
system evolution time. This approximation is in close relation to the Born
approximation, since it assumes that the environment is practically unaffected
by the system.

– The substitution of s→ t− τ is made, so that the limit of the integral can go
to infinity - justified by the large timescale difference between the environment
memory time and the system evolution time.

With these approximations the master equation becomes:

∂ρ̃S(t)

∂t
= −

∫ ∞
0

TrE

[
H̃I(t),

[
H̃I(t− τ), ρ̃S(t)⊗ ρE

]]
dτ (2.17)

These approximations have hereby provided the Born-Markov master equation in the
interaction picture, which can describe the evolution of an open system influenced by
weak coupling to the environment.

2.5.2 Correlation functions

We are now going to put the Born-Markov master equation into a more convenient and
notorious form that gives us more insight of its nature. In doing this, we define the
interaction Hamiltonian HI having the general form:

HI =
∑
α

Âα ⊗ B̂α (2.18)

where Âα and B̂α are respectively system and environmental operators. In the interaction
picture this Hamiltonian has the form:

H̃I(t) =
∑
α

Aα(t)⊗Bα(t)

=
∑
α

eiHStAαe−iHSt ⊗ eiHEtBαe−iHEt (2.19)
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If we now expand the commutators of (2.17):

∂ρ̃S(t)

∂t
=

∫ ∞
0

TrE

([
H̃I(t− τ)ρ̃(t)ρEH̃I(t)− H̃I(t)H̃I(t− τ)ρ̃(t)ρE

]
+H̃I(t)ρ̃S(t)ρEH̃I(t− τ)− ρ̃S(t)ρEH̃I(t− τ)H̃I(t)

)
dτ (2.20)

and insert the definition of H̃I(t) into this equation, where H̃(t − τ) and H̃(t) will be
separated by summing over respectively β and α. This gives the following expression for
the dynamics of the density operator:

ρ̃S(t)

dt
=
∑
αβ

∫ ∞
0

TrE (Aβ(t− τ)ρ̃S(t)Aα(t)⊗Bβ(t− τ)ρEBα(t)−Aα(t)Aβ ρ̃S(t)⊗Bα(t)BβρE

−AαBαρ̃S(t)⊗ ρEBα(t)Bβ(t− τ) + ρ̃S(t)Aβ(t− τ)Aα(t)ρEBβ(t− τ)Bα(t)) dτ

= −
∑
αβ

∫ ∞
0

([Aα(t), Aβ(t− τ)ρ̃S(t)] TrE (Bα(t)Bβ(t− τ)ρE)

+ [ρ̃S(t)Aβ(t− τ), Aα] TrE (Bβ(t− τ)Bα(t)ρE)) dτ (2.21)

Here we have also used cyclic invariance of the trace, which led to: TrE (Bα(t)Bβ(t− τ)ρE) =
TrE (Bβ(t− τ)ρEBα(t)) and TrE (Bβ(t− τ)Bα(t)ρE) = TrE (Bα(t)ρEBβ(t− τ)). These
factors are correlation functions of the environment. Since the Born-Markov approxima-
tion assumes that the environment is in a stationary state, such that ∂ρE

∂t = −i [HE , ρE ] =
0, means that the correlation functions become:

TrE (Bα(t)Bβ(t− τ)ρE) = TrE

(
eiHEtBαe−iHEteiHE(t−τ)Bβe−iHE(t−τ)ρE

)
= TrE

(
eiHEτBαe−iHEτBβρE

)
= 〈Bα(τ)Bβ(0)〉E = Cαβ(τ) (2.22)

And for the other one we get TrE (Bβ(t− τ)Bα(t)ρE) = Cβα(−τ). These correlation
functions are functions that define the correlation of the operators Bα and Bβ at two
different points in time. In this context they justify the Markov-approximation, since the
infinity-limit of the integration is dealt with because the correlation functions die off fast.
Inserting these correlation functions into (2.21) and transforming (2.21) back into the

Schrödinger picture using: ∂ρS
∂t = −i [HS , ρS(t)] + e−iHSt

(
∂ρ̃S(t)
∂t

)
eiHSt, we get the master

equation in the Schrödinger picture:

ρ̃S(t)

dt
= −i [HS , ρS(t)]−

∑
αβ

∫ ∞
0

([Aα, Aβ(−τ)ρS(t)]Cαβ(τ) + [ρS(t)Aβ(−τ), Aα]Cβα(−τ)) dτ

(2.23)

The first term on the right-hand-side represents the closed system and generates unitary
evolution of time for the system HS , while the remaining terms represent the environmen-
tal influence on the system, and generates therefore non-unitary evolution. This is the
equation that will be of great use in this thesis.



Chapter 3

The Quantum Zeno Effect

Formulating the QZE as a phenomenon that hinders the evolution of a quantum system
by the use of frequent measurements links to the work done by Sudarshan and Misra [2].
This formulation is often referred to as the genuine QZE [20], which will be a descriptive
term repeatedly used in the thesis. By most physicists the genuine QZE is considered a
physical impossibility, because the requirement of ”freezing” the state in its initial state,
is only obtained in the limit of infinitely frequent measurements [21]. The formulation is
also based on von Neumann measurements, which means that it in addition hinges upon
the notion of collapse of the wave function; a concept in quantum theory only accepted
by a few of its interpretations and furthermore constitutes the crux of the ’measurement
problem’ of quantum theory. For many theorists the genuine QZE is therefore just a
mathematical construct, and physically it should not even be possible to slow down the
evolution of the quantum state in this manner [22]. The theoretical scientist Pascazio, who
is well-endowed in this field, has explicitly stated that the QZE ”cannot be ascribed to the
’collapse’ of the wave function”[15]. Albeit its controversy, it has not been experimentally
proven or disproven and maybe never will be. If it would be, it would certainly put many
of the interpretations of quantum theory in danger.

The formulation of the QZE has however changed over the years and is now not only de-
fined by the previous conjecture, but covers a much broader context. The experimentally
verified manifestations of the QZE, e.g. [1], can be understood as a consequence of how
the dynamics of quantum systems gets modified by complex interactions with the external
macroscopic environment. It turns out according to the article [15] that practically any
interaction that greatly disturbs the considered system can provoke a QZE. Considering
this statement, the QZE as a phenomenon reaches far beyond the context formulated by
its original definition; whenever a strong perturbation provokes the dynamics of the sys-
tem. It has to be emphasized that this description of the QZE has been widely known,
and has appeared in literature on quantum theory many times in different contexts.

The external apparatus performing the measurement on the system therefore needs not be
a von Neumann measurement, which yields the collapse of the wave function. To obtain
the QZE it is sufficient to indirectly ”measure” the system with e.g. unitary ”continuous
coupling”[23]. This is physically equivalent to influencing the system with a driving oscil-
lating electric field (a laser), which induces Rabi-oscillation1 of the system [15]. Likewise,
it is possible to obtain the QZE by influencing a system with laser-pulses; corresponding
mathematically to so-called unitary kicks [24], which in essence are instantaneous unitary

1Oscillation between two levels of a system, is known as Rabi-oscillation
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processes that in comparison to von Neumann measurements, do not leave a collapsed
state [21].

3.1 How to read this thesis

We start out by outlining the theory behind the controversial genuine form of the QZE
based on von Neumann (projection) measurements - or rather the ’collapse’ of the wave
function. Afterwards we are going to discuss the ’measurement problem’ in QZE context,
followed by an extensive analysis of the QZE in QDs by projective measurements. The
QZE will then by analysed in QDs influenced by ’continuous coupling’ and different types
of external environments that lead to spontaneous emission or pure dephasing of the QD.
In this thesis we are not going to consider unitary kicks.

Also note that we use the following terminology:

� Dissipation is used if it is clear whether is refers to spontaneous emission or dephas-
ing.

� ’Continuous coupling’ and driving are used interchangeably and gives for Rabi os-
cillations induced by external fields.

� The terms coupling strength and Rabi frequency refer to the same quantity, Ω.
� Projective measurements and von Neumann measurements both refer to measure-

ments where wave function collapse is assumed.
� Later when we derive new master equations they will be referred to as rigorous

or complete master equations, whereas the master equation obtained through the
Lindblad formalism is referred to as the Lindblad master equation.

3.2 QZE: Projective measurements

In classical statistical mechanics, the model for the decay of any system is an exponential
function of time. However, while the decay of quantum systems is similar, there are some
unavoidable deviations from the classical model at certain timescales. The quantum evo-
lution, governed by the Schrödinger equation, will at short timescales be modelled by a
quadratic function of time.

This can be shown by considering the decay of an unstable quantum state, prepared in an
initial state |ψ(t0)〉; a normalized vector in the Hilbert space H. Because the considered
system is closed, the time evolution of the system is unitary and evolves in time according
to the Schrödinger equation (2.2). As previously stated, the state will therefore evolve
under the unitary operator U(t); |φ(t)〉 = U(t) |φ(t0)〉 = e−iHt |φ(t0)〉. The survival prob-
ability, P(t), i.e., the probability that the system retains its initial state at time t, will be
given by:

P (t) = |A(t)|2, with A(t) = 〈φ(t0)| e−iHt |φ(t0)〉 (3.1)

Where A(t) is called the survival amplitude. From this expression one can easily show that
the decay of any quantum system is not exponential. A Taylor expansion of the survival
probability is:

P (t) ≈ 1− 〈H〉 t2 + 〈H〉2 t2 + .. = 1−
〈
(H − 〈H〉)2

〉
t2 + ... = 1− t2

τ2
z

+ ... (3.2)
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Where τz is the ’Zeno time’ and the averages are taken over the initial state |φ(t0)〉. If
these averages are finite, it therefore follows that the survival probability is quadratic
rather than exponential for short times.

By a straightforward calculation done in [22] it can also be shown that the survival am-
plitude can be written as the Fourier transform of the energy spectral function η (E) for
the state |φ(t0)〉, given by:

A(t) =

∫ ∞
0

e−iEntη(E)dE, where η(E) =
∑
n

| 〈En|φ(t0)〉 |2δ(E − En) (3.3)

The only way the survival probability will be a exponential function of time, is if the
survival amplitude also is a exponential function of time. Since the Fourier transform
relation between ηE and A(t) is a one to one correspondence, it follows that this can only
be the case, if the spectral function η(E) has the form of a Lorentzian distribution[22]. The
expectation values 〈Hn〉 =

∫
Enη(E)dE in (3.2), will not be convergent at their infinite

upper limit with this spectral function. The survival probability can therefore never be
exponential at this timescale.

Now we will introduce the strong von Neumann (projective) measurements that will lead
to the manifestation of the QZE. Let us suppose that the unstable system is measured
N times at the time intervals τ = T/N . Since τ is very small, the survival probability
of the system will be given by (3.2). If the system is found in its initial state every time
it is measured, the wave function collapses and the state of the system is projected back
onto its initial state |φ(t0)〉2. The probability of survival in state |φ(t0)〉 at the end of the
sequence of N independent measurements, will therefore be the product of the probabilities
for surviving each of the short intervals, and thus we get:

P (T ) = [P (T/N)]N =

[
1−

(
T

Nτz

)2
]N
∼ e−( T

Nτz
)2

−→︸︷︷︸
N→∞

1 (3.4)

For large N the evolution of the system is slowed down and in the limit of infinite mea-
surements, i.e., when N →∞, the probability that the state will not decay goes to 1. The
system therefore never changes its state if it is ”continuously” measured - it is frozen in
its initial state. This is the QZE in its most general form.

This derivation of the QZE shows that the system is forced to remain in its initial state.
However, it has to be stressed that this formulation of the QZE is restrictive, since it does
not take into account incomplete measurements. By ’incomplete’ measurements is meant
that the projection operator is multi-dimensional rather than one-dimensional as in this
case - which happens if e.g. the measurement apparatus has insufficient resolution. If
we were to consider the case of frequent measurements by a multi-dimensional projection
operator - firmly derived by Misra and Sudarshan [2] - the QZE would necessarily not
freeze everything, but would rather constrain the evolution of the initial state into the
subspace defined by the ’measurement’. The evolution of the state within the projected
”Zeno subspace” is usually called ”quantum Zeno dynamics”, but is not a topic of our
concern - it should just not be overlooked.

2The system can also be found in its orthogonal state |φ(0)〉⊥, with quadratic probability 1-P(τ)=( τ
τz

)2,
but since τ = O(1/N), such an event becomes increasingly unlikely as N increases.
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3.3 The measurement problem w.r.t. the QZE

The problem of what happens in the aftermath of a measurement is what constitutes
the ’measurement problem’. Some interpretations of quantum mechanics depend on the
collapse to explain the connection between the Schrödinger equation and measurement
outcomes, but they generally fail to explain exactly how and why the collapse occurs.

However there are alternative theories on the measurement process based on decoherence,
which avoid the issues involved with the measurement problem by assuming that collapse
does not occur. We will briefly discuss an argument of one such theory [14] and what it
means for the QZE.

We consider a dynamical variable R belonging to an object we want to measure with a
given apparatus, prepared in an initial state |α0〉. If the initial state of the object is a
coherent superposition of the eigenvectors |r〉 of R, then the state of the complete system
starts in the uncorrelated state: |Ψ(ti)〉 =

∑
r cr |r〉 ⊗ |α0〉. After some time with unitary

evolution the initial state will evolve into the final state – the premeasurement state:

|Ψ(tf )〉 =
∑
r

cr |r〉 ⊗ |αr〉 . (3.5)

The density operator ρ(tf ) = |Ψ(tf )〉 〈Ψ(tf )| evidently describes a pure state. But if we
were now to make measurements on the object alone, we are neglecting the apparatus
and thus tracing it out of the complete state. Hence, the measured state will be a partial
state ρ(o)(tf ) = Tra (ρ(tf )). If we make it more concrete we might assume that the
premeasurement state is given by |Ψ(t)〉 = ce |e〉 ⊗ |αe〉 + cg |g〉 ⊗ |αg〉. Then the density
operator becomes

ρ(tf ) = |ce|2 |e〉 〈e| ⊗ |αe〉 〈αe|+ cec
∗
g |e〉 〈g| ⊗ |αe〉 〈αg| (3.6)

+cgc
∗
e |g〉 〈e| ⊗ |αg〉 〈αe|+ |cg|2 |g〉 〈g| ⊗ |αg〉 〈αg| .

If we trace out the apparatus assuming the apparatus states are mutually orthogonal, then
it will describe an incoherent mixture

p(o)(tf ) = |ce|2 |e〉 〈e|+ |cg|2 |g〉 〈g| . (3.7)

Hence, we see that the partial state may be incoherent, but the complete system re-
mains pure and coherent. The apparent loss of coherence in the system, when considering
measurement outcomes therefore do not necessarily require the notion of wave function
collapse.

The argument illustrates that collapse need not be essential to the theory of quantum.
The genuine QZE relies strictly on the validity of von Neumann projections and if wave
function collapse is not real this manifestation of QZE should not be real either. And
indeed some authors finds QZE objectionable because of this. For instance Ballentine
states in his book on quantum mechanics [22]: ”Like the old saying ’A watched pot never
boils’, we have been led to the conclusion that a continuously observed system never
changes its state! This conclusion is, of course, false”.

While the formulation of the QZE has changed to cover a much broader range of phenom-
ena that do not require the notion of collapse – whenever a strong perturbation provokes
the dynamics of the system [28] - this particular manifestation represents a physical dis-
tinction between the interpretations. As stated earlier, if experimental evidence were to
support this manifestation it should be possible to objectively falsify a number of inter-
pretations.



Chapter 4

General analysis of QZE

The aim of this chapter is to analyze the requirements for obtaining the QZE in two- and
three level QDs influenced by various disturbances from the external environment. The
dynamics of the QD is both going to be considered in open and closed quantum systems.
In the closed systems the QDs are only going to be influenced by time varying electric
fields – i.e. ’continuous coupling’ – while in the open systems the effects of spontaneous
emission and pure dephasing are going to be introduced to the dynamics of the QDs. We
start off by considering two-level QDs.

4.1 Two-level system

In a two-level system states are described in a two-dimensional Hilbert space by two
linearly independent basis vectors – we will call them |g〉 (ground state) and |e〉 (excited
state). The density operator is a 2x2 matrix, and can thus be expressed as a linear
combination of four linearly independent matrices such as I, σx, σy and σz. From this we
write:

ρ(t) =
1

2
(I + α ·σ) =

1

2

(
1 + αz(t) αx(t)− iαy(t)

αx(t) + iαy(t) 1− αz(t)

)
(4.1)

The factor 1
2 has been chosen such that Tr(ρ) = 1. The vector σ = (σx, σy, σz) contains

the Pauli spin matrices.

Bloch sphere

From the definition of (4.1) and the relation Tr(σiσj) = 2∂i,j it follows that

〈σi〉 = αi(t) (4.2)

and thus α = (αx(t), αy(t), αz(t))
T is a vector of the expectation values of the Pauli spin

matrices. It is known as the Bloch vector, which spans what is called the Bloch sphere.

It can easily be shown that the eigenvalues of ρ are 1
2(1 + |α|) and 1

2(1 − |α|). Since
eigenvalues of state operators cannot be negative, this implies that the length of the Bloch
vector must be restricted to the range 0 ≤ |α| ≤ 1. It can be shown that for pure states
the requirement Tr

(
ρ2
)

= 1 only holds when the length of the Bloch vector is |α| = 1,
whereas for mixed states the condition is |α| < 1. The state is totally mixed when |α| = 0,
where it is said to be described as a classical superposition. All the points on the surface of
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the sphere therefore correspond to pure states of the system, while points on the interior
correspond to mixed states. From this it is clear that the Bloch sphere can give a visual
insight into the states of the system and also how they evolve.

4.1.1 Lindblad master equation

If we consider a QD undergoing spontaneous emission or pure dephasing, we can use what
is called the Lindblad formalism. The Lindblad formalism is a weak-coupling Markovian
master equation that can describe the time-evolution of the system operator, when weak
dissipative and decohering effects of the environment is being considered. The density
operator obeys the equations of motion:

(spon. emission)
dρ

dt
= −i

[
HS′ , ρ

]
+ ΓL(σ)ρ (4.3)

(pure dephasing)
dρ

dt
= −i

[
HS′ , ρ

]
+ γL (σz) ρ. (4.4)

where σ = |g〉 〈e|, σz = |e〉 〈e| − |g〉 〈g| and HS′ is the system Hamiltonian in its rotational
frame.

The first term describes the unitary and coherent evolution of the system, while the second
term is the influence or the coupling to the environment, and generates dissipative non-
unitary dynamics of the system. This second term is therefore called the dissipator of the
system, and is given by:

L(A)ρ = AρA† − 1

2
(A†Aρ+ ρA†A) = AρA† − 1

2

{
A†A, ρ

}
(4.5)

The above Lindblad master equations meet all the requirements that any master equation
has to meet; it is trace-preserving and has completely positive dynamics.

The equations (4.3) and (4.4) are derived using the general expression (2.23) – more on
this in chapter 5.

4.1.2 Equations of motion in a two-level system

For the rest of this chapter we now consider a system Hamiltonian with driving, i.e.

HS′ =
Ω

2
(|e〉 〈g|+ |g〉 〈e|) . (4.6)

From (4.2) it follows that

〈σi〉′ = Tr [σi∂tρ(t)] . (4.7)

We use this relation to find the following two sets of differential equations

Hence, for both cases, we have a system of equations in which 〈σy〉 and 〈σz〉 are coupled,
and 〈σx〉 is not only decoupled, but becomes a simple exponential function.
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Spontaneous emission Pure dephasing

〈σx〉′ = −1
2Γ 〈σx〉 (4.8)

〈σy〉′ = −1
2Γ 〈σy〉 − Ω 〈σz〉 (4.9)

〈σz〉′ = Ω 〈σy〉 − Γ [〈σz〉+ 1] . (4.10)

〈σx〉′ = −2γ 〈σx〉 (4.11)

〈σy〉′ = −2γ 〈σy〉 − Ω 〈σz〉 (4.12)

〈σz〉′ = Ω 〈σy〉 . (4.13)

Table 4.1: Equations of motion for two-level system for the cases of spontaneous emission and pure
dephasing.

4.1.3 Population number in two-level system

In the succeeding sections we will tend to calculate the population number given the Bloch
vector solution to the equations of motion.

Below we derive a simple relation for the population number of the |e〉 level

〈|e〉 〈e|〉 =

〈[
1 0
0 0

]〉
=

〈
1

2
[I + σz]

〉
=

1

2
[1 + 〈σz〉] . (4.14)

And since 〈|e〉 〈e|〉+ 〈|g〉 〈g|〉 = 1, we also find

〈|g〉 〈g|〉 =
1

2
[1− 〈σz〉] . (4.15)

4.1.4 Analytical solutions

From the two systems of equations in table 4.1, the system for spontaneous emission is
inhomogeneous, while the system for pure dephasing is homogeneous. This calls for two
different methods of solving the systems, but we will first show a general method that can
be used to approximate solutions to both the homogeneous and inhomogeneous equation
by a series expansion, while also addressing the steady state solutions.

Series expansion

The first-order differential system of equations of table 4.1 can be written in the matrix
form

α̇(t) = Mα(t) + b (4.16)

in which α(t) is the Bloch vector, M is the coefficient matrix and b is a constant vector
term.

In order to solve this equation we define the following quantity

∆α(t) = α(t)− α(∞), (4.17)

where α(∞) is the (steady state) Bloch vector at t =∞ – for which we assume all transients
have passed completely such that α̇(∞) = 0. Using this along with the definition (4.17),
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we find the following relation

α̇(t) = 0

⇔Mα(∞) + b = 0

⇔ α(∞) = −M−1b . (4.18)

We are now able to write

∆α̇(t) = α̇(t) = Mα(t) + b

= M∆α(t) +Mα(∞) + b

= M∆α(t) +M(−M−1b) + b

= M∆α(t). (4.19)

This equation, ∆α̇(t) = M∆α(t), has the simple solution

∆α(t) = eMt∆α(0), (4.20)

where the exponential function of Mt is defined according to the usual exponential function
of an operator

eA =
∞∑
n=0

An

n!
= I +A+

AA

2!
+
AAA

3!
+ ... (4.21)

in which I is the identity matrix.

From (4.20) it follows that

α(t) = eMt∆α(0) + α(∞)⇔ α(t) = eMt
[
α(0) +M−1b

]
−M−1b . (4.22)

Spontaneous emission

To find the complete solution for spontaneous emission we again write up the system of
equations as

α̇(t) = Mα(t) + b, (4.23)

where (from table. 4.1)

M =

 −Γ
2 0 0

0 −Γ
2 −Ω

0 Ω −Γ

 , b =

 0
0
−Γ

 . (4.24)

The solution can be found by first finding the complete solution αhom to the corresponding
homogeneous equation α̇(t) = Mα(t), and then adding a particular solution αpar such that

αcomplete = αhom + αpar. (4.25)

The complete solution is given by[25]

α(t) =

3∑
i=1

cie
λitvi, (4.26)

in which λi are the eigenvalues to M , and vi are the normalized eigenvectors – see app.
A.1.1 eq. (A.1) and (A.2) for the computed eigenvalues and eigenvectors.
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The constants ci are found using the initial values. For the usual case where the systems
starts off in the excited state, i.e. (α1(0), α2(0), α3(0)) = (0, 0, 1), we have computed and
listed these constants – see app. A.1.1, eq. (A.6).

We now find the particular solution. This is done by assuming that the guess function

αg = ct+ d (4.27)

is a solution. Hence, by inserting in the matrix form of the differential equation

α̇g(t) = c = M(ct+ d) + b (4.28)

⇔ t(Mc) + (d− c + b) = 0. (4.29)

Due to linear independence we require that

Mc = 0 and d− c + b = 0. (4.30)

Solving these two equations yield

c = 0, d =

(
0,

2ΓΩ

Γ2 + 2Ω2
,− Γ2

Γ2 + 2Ω2

)T

. (4.31)

The particular solution is therefore

αpar = d, (4.32)

and consequently the complete solution is

αcomplete =

(
0,

2ΓΩ

Γ2 + 2Ω2
,− Γ2

Γ2 + 2Ω2

)T

+

3∑
i=1

cie
λitvi. (4.33)

Pure dephasing

From table 4.1 the pure dephasing system of equations can be written as

α̇(t) = Mα(t), (4.34)

where

M =

 −2γ 0 0
0 −2γ −Ω
0 Ω 0

 . (4.35)

This equation has the complete solution[25]

α(t) =
3∑
i=1

cie
λitvi. (4.36)

The eigenvalues and eigenvectors are listed in app. A.1.1 in eq. (A.9) and (A.10).

The constants are found from the initial values. Again, for the case (α1(0), α2(0), α3(0)) =
(0, 0, 1), i.e. the system starts off in the excited state, we have computed and listed these
constants – see app. A.1.2, eq. (A.13).

Combining all the computed values and reducing we obtain

αcomplete(t) =

(
0,

(
ε2 − γ2

) (
e2tε − 1

)
e−t(γ+ε)

2Ωε
,
e−t(γ+ε)

(
γ
(
e2tε − 1

)
+ ε
(
e2tε + 1

))
2ε

)T

,

(4.37)

where we have defined ε =
√
γ2 − Ω2.
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4.1.5 Solutions in two-level system

In the following we will present and discuss results. We will tend to use values that are
realistic for QDs, but we may sometimes refrain from this for illustrative purposes.

The systems we will be considering are depicted in fig. 4.1.

(a) Only Rabi oscillations. (b) Only dissipation. (c) Driving and dissipation.

Figure 4.1: Diagrams of the systems we will consider in this chapter. Note that the downward arrow
labelled Γ represents both spontaneous emission and dephasing, even though the semantic behind
the downward arrow is most appropriate for emission.

Solution to spontaneous emission Lindblad master equation

We consider the basic behavior of two-level systems with spontaneous emission and driving.
We use the analytical solution (4.33).

Firstly, we look at systems where the driving is dominant. We expect unitary evolution
if the dissipation vanishes, Γ → 0, meaning that we will maintain a pure state over time
with a length of the Bloch vector equal to 1. In figure 4.2 we see this. For weak, but
non-zero, dissipation the Rabi oscillations are present for a relatively long time as seen on
figure 4.3, until a steady state eventually settles in.
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Figure 4.2: Solution with driving strength
Ω = 1 ps−1 and no dissipation, Γ = 0 ps−1,
corresponding to the unitary evolution of a
closed system. The Rabi oscillations continue
indefinitely.
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Figure 4.3: Solution with driving stength Ω =
1 ps−1 and weak dissipation Γ = 0.1 ps−1. It
takes a considerable amount of time to reach
the steady state due to the weak dissipation.

In figure 4.4 the driving and dissipation are comparable. This results in Rabi oscillations
being present, but only for a short time, after which the components of the Bloch vector
reaches steady state. The steady state value for 〈σz〉 is displaced downwards, but only
slightly. On figure 4.5 however, with strong dissipation, the steady state value goes all the
way down to -1, corresponding to a full transition from the excited state to the ground
state.
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Figure 4.4: Solution with comparable magni-
tude of driving strength and dissipation rate;
Ω = 1 ps−1 and Γ = 0.5 ps−1. The steady
state is displaced down towards -1, corre-
sponding to a higher population of the |g〉
state, due to the spontaneous emission. This
was not visible on figure 4.3, because the rate
was too weak.
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Figure 4.5: Solution with dominating dissi-
pation; Γ = 0.5 ps−1 and Ω = 0.05 ps−1. In
this regime Rabi oscillations do not appear
and the steady state settles in quickly. The
steady state value for 〈σz〉 goes down to about
-1, corresponding to the ground state being
populated.

Solution to pure dephasing Lindblad master equation

We now study the basic behavior of systems subjected to pure dephasing and driving. We
use the analytical solution (4.37).

Figure 4.6 shows the solution for a system with weak dissipation. Due to the weak dissi-
pation the steady state takes some time to settle in, whereas on figure 4.7, in which the
driving strength and dissipation rate are comparable, the steady state is already present
at 10 ps.
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Figure 4.6: Solution with low dissipation;
ω = 1 ps−1 and γ = 0.1 ps−1.
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Figure 4.7: Solution with comparable magni-
tude of driving strength and dissipation rate;
ω = 1 ps−1 and γ = 0.5 ps−1.

On figure 4.8 we have plotted the solution for a system with strong dissipation and weak
driving. As can be seen this results in the steady state being at about 400 ps, which is
much more than the 10 ps on figure 4.7, even though these two solutions are based on the
same dissipation rate, γ = 0.5 ps−1. This indicates that the driving strength is important
to the steady state time. The tendency towards long steady state times is shown even
more clearly on figure 4.9, where the dissipation rate has been increased by a factor of 20
compared to the two other figures. We will investigate this in more detail later.
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Figure 4.8: Solution with strong dissipation
and weak driving strength; ω = 0.1 ps−1 and
γ = 0.5 ps−1. Note that the time interval had
to be increased significantly to encompass the
steady state.
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Figure 4.9: Solution with very strong dissi-
pation rate, γ = 10 ps−1 and weak driving
ω = 0.1 ps−1. The very uneven relationship
between the driving and the dephasing rate
yields a very slow decay. This is explained
later.

4.1.5.1 Bloch sphere

The above plots are all based on the initial state being |e〉, and thus are not completely
representative for the overall behavior of the systems. To represent the solution more
generally, we choose to plot the Bloch sphere, whereby we take all possible initial state
vectors into consideration and visualize their evolution as a whole.

For this purpose we use the initial state

|ψ〉 = cos

(
θ

2

)
|0〉+ eiφ sin

(
θ

2

)
|1〉 , θ ∈ [0, π], φ ∈ [0, 2π]. (4.38)

By letting θ and φ run through their respective intervals, the whole surface of pure states
on the Bloch sphere is spanned.

Doing this and then tracking the time evolution for each individual initial state, we can plot
the surface at discrete times. This has been done for both the dephasing and spontaneous
emission Lindblad master equation, see figure 4.10 and 4.11 respectively.

The first figure 4.10 shows the dynamics of a system undergoing spontaneous emission
while being influenced by a relatively weak drive with coupling strength Ω = 0.5 ps−1.
Since the drive is relatively weak, the system is seen to evolve into a state that on average
is more in the ground state than in the excited state. This is true, since the Bloch sphere
continuously approaches a state where 〈σz〉 ≈ −1, which is equivalent to the ground state.
The bloch sphere also reveals that the system continuously evolves into being a more mixed
state, because the sphere shrinks as time goes on. The sphere will however never evolve
into a single point, formed when 〈σz〉 = −1, because the system is being driven. This
can be seen on the figure showing the bloch sphere after t = 6 ps where the system has
approximately reached its steady state. Since spontaneous emission is not a phenomenon
that greatly affects the coherence of the system, the 〈σx〉 and 〈σy〉 are not wiped out right
away, but decrease slowly.

The figure 4.11 shows the dynamics of a system undergoing pure dephasing while being
influenced by a weak drive with coupling strength Ω = 0.4 ps−1. The Bloch sphere almost
instantly evolves into a tilted line, reducing 〈σx〉 and 〈σy〉 to almost zero. This is expected
since pure dephasing destroys the coherence of the pure state, which is equivalent to
reducing 〈σx〉 and 〈σy〉 - see (4.1). The Bloch sphere is seen to continuously evolve into
a more mixed state, and at the steady state limit it will eventually reach a single point
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at 〈σ〉 = (0, 0, 0)T . This means that the system with time will evolve into a fully mixed
state, which is expected.

Figure 4.10: Bloch spheres for a two-level system with spontaneous emission and driving using
Γ = 0.1 ps−1 and Ω = 0.5 ps−1. Ω gives rise to the skewness of the surface.

Figure 4.11: Bloch spheres for a two-level system with dephasing and driving using γ = 0.5 ps−1 and
Ω = 0.4 ps−1. Ω gives rise to the skewness of the surface.
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4.2 QZE by projective measurements

In this section we will assume the von Neuman projection postulate and use it in our
calculations. We assume that we are able to make any number of measurements on our
system, and each measurement entails wave function collapse modelled either as a strong
or weak von Neumann projection.

The strong von Neumann projections are probabilistic in nature (the state collapses onto
a random basis vector). We can simulate strong von Neumann projections using random
numbers, and then we could average over the different outcome sequences to obtain a
distribution. A possible outcome sequence has been illustrated in figure 4.12.

Averaging over repeated strong von Neumann projections is equivalent to using weak von
Neumann projections from the start. This has been done one a system with spontaneous
emission and no driving – see fig. 4.16.
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Figure 4.12: Survival probability for |e〉 dur-
ing several measurements in a system with
spontaneous emission rate Γ = 0.5 ps−1 and
no driving. The specific course of outcomes
represents a single outcome sequence, which
constitutes a member of the complete out-
come ensemble.
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Figure 4.13: Average survival probability for
|e〉 during 5 and 10 measurements, respec-
tively, in a system with spontaneous emission
rate Γ = 0.5 ps−1 and no driving. The in-
creased number of measurements has no effect
in this case.

From the figure 4.13 we see that even assuming the von Neumann projection postulate the
collapses have no effect. This is expected due to the constant dissipation rate Γ – as we
will see in sec. 4.2.1 the survival probability is given by Pe(t) = Pe(0)Ne−Γt for Γ being
constant, which is consistent with figure 4.13.
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Figure 4.14: Survival probability for |e〉 during 5 and 25 measurements, respectively, in a system
with driving Ω = 0.3 ps−1 and no dissipation. This shows the QZE by von Neumann measurements
for the somewhat trivial case of a system that only has with unitary evolution.
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However, if we make measurements on a system that only has unitary evolution, i.e.
driving and no dissipation, we are able to obtain confined dynamics – see figure 4.14. This
is consistent with the analysis in sec. 3.2.

4.2.1 QZE by projective measurements: theoretical aspect

We will now theoretically investigate a two-level QD undergoing spontaneous emission
and no driving. The system Hamiltonian is given by HS = Ωx

2 = 0, which is equivalent to
physically turning off the driving Ω in the system. The Lindblad master equation hence
only consists of the dissipator term, which represents the spontaneous emission of the QD.
By looking at the evolution of the survival probability of the excited state we may then
study the occurrence of QZE:

dPe(t)

dt
= Tr

(
|e〉 〈e| dρS

dt

)
= Tr

(
|e〉 〈e|Γ

(
σρSσ

† − 1

2

{
σ†σ, ρS

}))
= Tr

(
|e〉 〈e|Γ

(
|g〉 〈e| ρS |e〉 〈g| −

1

2
{|e〉 〈e| , ρS}

))
= −1

2
ΓTr (|e〉 〈e| ρS + |e〉 〈e| ρS |e〉 〈e|)

= −ΓPe(t). (4.39)

The survival probability of the excited state is then given by the solution to this equation:
Pe(t) = Pe(0)e−Γt. The evolution of the survival probability is therefore a exponential
function of time, which ultimately means that the system never can generate a QZE; even
with projective measurements. If we suppose that the unstable system is measured/ob-
served N times at the time intervals τ = T/N and that the system is found in its initial
state at every measurement, the probability of survival will be given by the product of the
probabilities for each interval:

Pe(T ) = [P (T/N)]N =
[
Pe(0)e−Γ T

N

]N
= Pe(0)Ne−ΓT (4.40)

Which shows that the dependence on the measurements for this probability is not changing
the fact that the system will eventually decay.
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4.2.2 QZE by projective measurements with time dependent
dissipation

As seen in the previous section frequent measurements had no effect on the survival
probability, because the dissipation rate was taken to be constant. This is because
∂tPe(t) = −ΓPe(t), eq. (4.39). But if Γ is instead taken to be a function of time, Γ(t),
that starts from zero, the time derivative will also be zero, and then if we keep projecting
it back to zero by doing frequent measurements, the derivative will on average get closer
to zero.

We demonstrate this for a system with spontaneous emission and driving using a realistic
model for Γ(t), which is derived later in sec: 5.6,

Γ(t) = 2

∫ ∞
0

sin
(
t(ωl − ω)

)
ωl − ω

J(ω) dω , J(ω) = ηω3e−ω/ωc . (4.41)

Changing Γ to be a function of time renders the analytical solution (4.33) inapplicable,
and we must resort to numerical solvers 1. We have implemented this time dependent
function for Γ(t) – it has been plotted on figure 4.15. The associated solution to the
two-level system with spontaneous emission and driving is shown on figure 4.16, where
the higher number of measurements lead to a higher survival probability as expected, and
thus demonstrates the confined dynamics of the QZE for Nm →∞. See app. A.2 for the
code.
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Figure 4.15: Dissipation rate, Γ(t), computed
from (4.41). We have used ωl = 0.1 ps−1,
ωc = 0.1 ps−1, η = 121 ps2. These values
may not be realistic in QD systems, but they
have been chosen for illustrative purposes,
and such that Γ(t) peaks at approximately
the same value as the constant Γ value used
in figure 4.13.

time [ps]
0 5 10 15

S
u
rv
iv
a
l
p
ro
b
a
b
il
it
y

0

0.2

0.4

0.6

0.8

1

Nm = 5

Nm = 10

Figure 4.16: Average survival probability for
|e〉 during 5 and 10 measurements, respec-
tively, in a system with spontaneous emission
and driving. The used model for Γ(t) is de-
scribed and shown in figure 4.15, and we have
used Ω = 0.1 ps−1. The increased number of
measurements induces an increased survival
probability.

We now want to show that the QZE can also be obtained by von Neumann measurements
in a system with dephasing and driving.

We use a realistic model for γ(t), which is derived later in sec: 5.6,

γ(t) = 2

∫ ∞
0

sin
(
t(Ω− ω)

)
Ω− ω

J(ω)N(ω) dω , J(ω) = αω3e−ω
2/ω2

c , (4.42)

where N(ω) is the Bose-Einstein occupation number given by

N(ω) =
1

1 + eω~/kBT
. (4.43)

1Mathematica and Matlab has been used for this purpose with the functions NDSolve and ode45,
respectively.
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Figure 4.17: Dissipation rate, γ(t), computed
from (4.42). We have used Ω = 0.4 ps−1, T =
50 K, α = 121 ps2 and ωc = 2.2 ps−1. These
values are realistic for QD systems [26].
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Figure 4.18: Average survival probability for
|e〉 during 5 and 20 measurements, respec-
tively, in a system with dephasing and driv-
ing. The used model for γ(t) is described
and shown in figure 4.17, and we have used
Ω = 0.4 ps−1. Again, we see that an increased
number of measurements induces an increased
survival probability.

We conclude that if von Neumann measurements are performed on a system, the QZE can
be obtained as long as the dissipation is time dependent as long.

Effect of spontaneous emission rate

A rather obvious parameter that we may also adjust in order to increase the survival
probability in a system with spontaneous emission and driving, is the spontaneous emission
rate itself.

time [ps]
0 5 10 15 20 25 30

D
is
si
p
a
ti
o
n
ra
te

[p
s−

1
]

0

0.1

0.2

0.3

0.4

0.5

η = 121ps2

η = 50ps2

Figure 4.19: Dissipation rate, Γ(t), computed
from (4.41). We have used ωl = 0.1 ps−1,
ωc = 0.1 ps−1, and η = 121 ps2 or η = 50 ps2.
Since η scales Γ(t), so it is useful for showing
differences between a strong and weak dissi-
pation.
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Figure 4.20: Survival probability of |e〉 in
a system with dissipation, where the rate is
scaled by η, and driving; Ω = 0.3 ps−1. Low-
ering the dissipation rate increases the sur-
vival probability, but only to a certain extent,
which is outlined by the η = 0 curve.

On figure 4.19 we see the spontaneous emission rate for two different values of the param-
eter η, which scales Γ(t) linearly through the relationship in (4.41). The value η = 121 ps2

is the one that was used previously in figure 4.20. Based on the time-dependent rates
shown on figure 4.19, we have plotted the survival probability of |e〉 during 5 measure-
ments in a system with spontaneous emission and driving, see figure 4.20. On this figure
we have also plotted the survival probability for η = 0 for reference – this corresponds
to unitary evolution, no dissipation, and should simply generate a Rabi oscillation as on
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figure 4.2; however the projective measurements interrupts the oscillations, which reduces
the amplitude, and thus projective measurements act similarly to dissipation.

From figure 4.20 we see that a higher survival probability can be obtained by lowering
the dissipation rate, which is not that surprising, but the survival probability can never
go beyond the η = 0 line, because the survival probability is also affected by the driv-
ing. The only way to obtain QZE in this system is therefore to increase the number of
measurements.

4.3 QZE by strong dephasing

In this section we show that the Zeno effect occurs when the dephasing rate γ is high. We
assume that the system initially starts off in the state |e〉. Applying dephasing and driving
the system is expected to approach a maximally mixed state with population number of
0.5 for both |e〉 and |g〉. This behaviour cannot be avoided, but it can be stalled.

From (4.37) we see that

〈σz〉 = α3(t) =
e
−t
(√

γ2−Ω2+γ
) (√

γ2 − Ω2
(
e2t
√
γ2−Ω2

+ 1
)

+ γ
(
e2t
√
γ2−Ω2 − 1

))
2
√
γ2 − Ω2

.

(4.44)

For strong dephasing, or weak driving, i.e. γ � Ω, we can use the approximation 1 +
Ω2/γ2 → 1. Inserting this into (4.44) evaluates to

〈σz〉 |(1+Ω2/γ2→1) = 1⇔ 〈|e〉 〈e|〉 = 1. (4.45)

Using the parameter ε =
√

1− Ω2/γ2, and absorbing γ into the time variable t in (4.44),
T = tγ, we have plotted the expression (4.44) in fig. 4.21. The figure shows that the
population number of |e〉 on a fixed time interval approaches 1 as expected.

For any non-zero value of Ω2/γ2 the behavior 〈σz〉 → 0 is still intact for high enough
times, but in the limit 1 + Ω2/γ2 → 1 we have 〈σz〉 = 1 regardless of t.
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Figure 4.21: Time evolution of 〈σz〉 in a system with pure dephasing and driving, where Ω = 1ps−1.
For any finite value of γ, we still have 〈σz〉 → 1 for t → ∞, but as indicated on the plot, 〈σz〉
approaches 1 on a fixed time interval, and then so does the population number of |e〉, as 1 + Ω2/γ2

approaches 1. From the figure we see that stronger dephasing – or equivalently; weaker driving –
leads to the Zeno effect.
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4.4 Three-level system

4.5 Qutrit system

We shall now consider the more advanced case of a three-level system. New features arise
when an additional level is coupled with previously the considered two-level system. We
find that this will allow for new manifestations of the QZE. The added level is called the
pump level, |p〉, such that we now have |p〉, |e〉 and |g〉 described by the basis vectors
(1, 0, 0), (0, 1, 0) and (0, 0, 1), respectively.

The systems that are considered in this chapter are shown in figure 4.22.

(a) Dissipation and driving. (b) Only driving. (c) Dissipation and double driv-
ing.

Figure 4.22: Diagrams of the three-level systems we will consider in this thesis. Note that the
downward arrow labeled Γ represents both spontaneous emission and dephasing, even though the
semantic behind the downward error is most appropriate for emission.

4.5.1 Description of a three-level system

Using the Lindblad formalism as for the two-level system, we can construct a master
equation

dρ

dt
= −i

[
ĤS′ , ρ

]
+ ΓL (M) ρ, (4.46)

where M is an operator that specifies either spontaneous emission or pure dephasing
between two states.

Again we must solve the master equation based on the expectation values of a complete
set of matrices in a three-level system. Such a complete set is given by the Gell-Mann
matrices,

λ1 =

0 1 0
1 0 0
0 0 0

 , λ2 =

0 −i 0
i 0 0
0 0 0

 , λ3 =

1 0 0
0 −1 0
0 0 0

 (4.47)

λ4 =

0 0 1
0 0 0
1 0 0

 , λ5 =

0 0 −i
0 0 0
i 0 0

 , λ6 =

0 0 0
0 0 1
0 1 0

 (4.48)

λ7 =

0 0 0
0 0 −i
0 i 0

 , λ8 =
1√
3

1 0 0
0 1 0
0 0 −2

 . (4.49)

From these linearly independent matrices we define the density operator as [27]

p(t) =
1

3

(
I +
√

3

8∑
i=1

λiαi(t)

)
. (4.50)
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Unlike the Pauli matrices, the Gell-Mann matrices do not lead to the simple relationship
〈λi〉 = αi(t), but instead

〈λi〉 = Tr(λip(t)) = Tr

[
λi

1

3

(
I +
√

3

8∑
n=1

λnαn(t)

)]

= Tr

(
λi

1

3
I

)
+ Tr

(
1

3

√
3
∞∑
n=1

λiλnαn(t)

)

= 0 +
1√
3

∞∑
n=1

Tr (λiλnαn(t)) =
2√
3
αi(t). (4.51)

Here we have used the traceless property of the Gell-Mann matrices along with the relation
Tr(λiλj) = 2δi,j . The vector of the α values is the three-level Bloch vector, which is
analogous to the two-level Bloch vector. It follows from (4.51) that

〈λi〉′ = Tr (λi∂tp(t)) =
2√
3
α′i(t). (4.52)

This relation can be used to construct a system of 8 coupled equations of motion, which
can in principle be solved analytically by using (4.22), but in practice we use the numerical
solvers mentioned earlier.

Population number

The population number in a given level |ψ〉 is given by Tr(|ψ〉 〈ψ| p). From the definition
of the density operator (4.50) we find that

p(t) =


1
3

(√
3
(
α3(t) + α8(t)√

3

)
+ 1
)

α1(t)−iα2(t)√
3

α4(t)−iα5(t)√
3

α1(t)+iα2(t)√
3

1
3

(√
3
(
α8(t)√

3
− α3(t)

)
+ 1
)

α6(t)−iα7(t)√
3

α4(t)+iα5(t)√
3

α6(t)+iα7(t)√
3

1
3 (1− 2α8(t))

 ,
(4.53)

and thus for the population number in the excited state |e〉 we have

Tr(|e〉 〈e| p) =
1

3

(
α8(t)−

√
3α3(t) + 1

)
. (4.54)
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4.5.2 QZE in three-level systems

Of the systems shown in figure 4.22 we will at present consider 4.22b and 4.22c. The
system 4.22a will be considered thoroughly later in the thesis.

For both the considered three-level systems we use a system Hamiltonian, analogous to
that of the two-level system, given by

ĤS′ =
Ωeg

2

(
|e〉 〈g|+ |g〉 〈e|

)
+

Ωpe

2

(
|p〉 〈e|+ |e〉 〈p|

)
. (4.55)

Firstly, we try to set Ωpe = Ωeg, which leads to completely balanced population numbers
as seen in figure 4.23. By making the driving in the pe-subsystem strong relative to Ωeg,
we suppress the population number of |g〉 – this is shown on figure 4.24.
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Figure 4.23: Population number for three-
level system with continuous coupling where
Ωpe = 1 ps−1,Ωeg = 1 ps−1 and Γ = 0. The
amplitude of the P (e) oscillation is only half
that of the P (p) and P (g) oscillations due to
|e〉 being coupled both to |p〉 and |g〉.
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Figure 4.24: Population number for three-
level system with continuous coupling where
Ωeg = 1 ps−1,Ωpe = 2 ps−1 and Γ = 0. The
stronger driving between the p and e level re-
sults in a smaller amplitude of P (g), whereas
the P (e) amplitude increases.

Now, if we do the opposite by making the driving strong in the eg-subsystem relative to
Ωpe, we get the converse effect; the population number of |p〉 becomes ”isolated” in a sense
– see figure 4.25 and figure 4.26, where it is even more clear. This is a well-known feature of
continuous coupling in a three-level system [21] and is often referred to as a manifestation
of the QZE. This is also explained in sec. 5.3 by electromagnetically induced transparency.

It can argued that this manifestation of the QZE is not that relevant, because the confined
dynamics is obtained in a system that has no dissipation at all. If we introduce just the
slightest dissipation in the system, the scheme will not work. This has been shown on
figure 4.27, where we show the population number of |p〉 for different dissipation rates.
Even for a small dissipation rate the QZE fails to be obtained, and this is regardless of how
large Ωeg is. This is due to the dissipation being completely independent on the driving,
which is not the case if the system is modelled more realistically – we shall see this later.
For now though, the only counteraction to dissipation in this system is by performing von
Neumann measurements; this has been shown on figure 4.28.
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Figure 4.25: Population number for three-
level system with continuous coupling where
Ωpe = 1 ps−1,Ωeg = 1.5 ps−1 and Γ = γ = 0.
Compared to fig. 4.23 we see that due to
Ωeg > Ωpe the population number of p starts
to increase.
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Figure 4.26: Population number for three-
level system with continuous coupling where
Ωpe = 1 ps−1,Ωeg = 5 ps−1 and Γ = γ = 0.
Now that Ωeg is significantly larger than Ωpe
it becomes clear that the QZE is achieved for
Ωeg →∞ while Ωpe is finite.
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Figure 4.27: Population number of |p〉 in a
three-level system with continuous coupling
and dissipation; Ωpe = 1 ps−1,Ωeg = 5 ps−1

and dissipation rate given by Γ(t) from eq.
(4.41) where η is specified on the plot. The
non-zero values of Γ causes dissipation, and
even for weak dissipation, η = 20 ps2, the
QZE cannot be obtained regardless of how
large Ωeg is. If we introduce measurements
however, it is still possible, see fig. 4.28.
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Figure 4.28: Population number of |p〉 in a
three-level system with continuous coupling
and dissipation; Ωpe = 1 ps−1,Ωeg = 5 ps−1

and Γ = Γ(t) with η = 121 ps2, eq. (4.41),
with and without measurements being per-
formed. The red curve is based on 16 mea-
surements, while the blue curve is based on no
measurements being performed. The higher
population number of the red curve indicates
that the QZE can be obtained in this system.
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Itano’s experiment

The experiment done by Itano et al. [1] can be simplified to the three-level system shown
in figure 4.22c. In Itano’s experiment however, the state is prepared in its ground state,
whereas we have almost only (the exception being the Bloch sphere) considered systems
prepared in the excited state. The difference between Itano’s actual experiment and the
system 4.22c is that Itano used laser pulses that rapidly swept the upper subsystem instead
of having ’continuous coupling’, but by assuming that the laser pulses are frequent enough,
the pulses can be described by ’continuous coupling’ [28].

We have implemented the simplified version of Itano’s experiment. The result can be seen
in figure 4.29, where it is clear that the population numbers indicate confined dynamics.
This is because of the strong driving in the pe-subsystem, which makes the driving in
the eg-subsystem off-resonant – similarly to what was seen on figure 4.26. However,
when increasing the dissipation in the pe-subsystem, the population number of |g〉 decays
significantly, see figure 4.30. To counteract this we could increase Ωpe even further, so
clearly the confined dynamics depend on the balance between Ωpe and Γ.
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Figure 4.29: Population numbers for three-
level system with continuous coupling where
Ωpe = 5,Ωeg = 1 and Γ = 0.1 ps−1. Initial
state is |g〉 and not |e〉 as usual.
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Figure 4.30: Population numbers for three-
level system with continuous coupling where
Ωpe = 5 ps−1,Ωeg = 1 ps−1 and Γ = 1 ps−1.
Initial state is |g〉 and not |e〉 as usual. The
increased value for Γ has a significant effect
when compared to figure 4.29.



Chapter 5

Master equation from first principles

The aim of this chapter is to derive a more detailed form of the Born-Markov master
equations used throughout the analysis of the QZE in the previous chapter. By virtue
of these derivations and with the use of a couple of approximations, we will hereafter
justify the general Lindblad form of the master equations. As previously stated, master
equations govern the evolution of open systems under the influence of weak environmental
interactions. The dynamics generally is not unitary and greatly depends on the system
and environmental interaction under consideration. We are therefore going to examine a
realistic and practical model, based on a QD.

In our model we are both considering a two-level and a three-level QD interacting with an
environment comprising of a denumerably infinite set of independent harmonic oscillators.
This model is practical since the environment is a truncated version of a bath of bosons,
which, if treated as photons, is dynamically equivalent to a (quantized) electromagnetic
field. It can therefore be used to study a wide range of open systems in quantum optics
and is also considered being one of the most fundamental models within this field. If the
bosons instead are treated as phonons, the same model can be used to for example repre-
sent the coupling to lattice vibrations of crystalline solids. We will consider both of these
cases, and based on these derive the master equations for a QD undergoing respectively
spontaneous emission and pure dephasing.

In section (2.5.1), a general expression for the Born-Markov master equation (2.23) was
derived and shown to be restricted to the Born and Markov approximations (2.5.1.1).
In the next sections we will make use of this expression and hence also implicitly its
approximations. We follow the outline of [29].

5.1 Spontaneous emission with driving

The first case we want to consider, is a two-level QD undergoing spontaneous emission
while being driven by a electromagnetic field (a laser). Its corresponding Hamiltonian is
given by:

H = HS +HE +HI

=
ε

2
σz + Ω cos (ωlt)σx +

∑
k

ωkb
†
kbk +

∑
k

gk

(
σ†bk + σb†k

)
(5.1)
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The system Hamiltonian – first two terms – represents the two-level QD driven by the laser
with frequency ωl and coupling strength Ω, where the ground state |g〉 and excited state
|e〉 are split by the energy ε. The zero point energy of the system is placed in the middle
of the energy gap, and therefore we may represent the system as ε

2σz = ε
2 (|e〉 〈e| − |g〉 〈g|).

The bath of harmonic oscillators – third term – of frequencies ωk is described respectively
by the annihilation b†k and creation bk operator and have wavevectors k. The interaction
Hamiltonian – fourth term– couples the two-level system with the harmonic oscillators
by the coupling constants gk, where σ† = |e〉 〈g| and σ = |g〉 〈e|. It is worth noting that
the coupling strength Ω is proportional to the amplitude (not the optical intensity) of the
light field and to the dipole moment of the level transition.

In order to simplify our calculation, we want to put the Hamiltonian into a frame rotat-
ing at the laser frequency ωl, defined by the transformation H → H

′
= UR(t)HU †R(t) +

i (∂tUR(t))U †R(t) with the unitary operator UR(t) = ei
ωl
2
σzt. The corresponding trans-

formed Hamiltonian is:

H
′

=
∆

2
σz +

Ω

2

((
1 + e2iωlt

)
σ† +

(
1 + e−2iωlt

)
σ
)

+HE +
∑
k

gk

(
σ†eiωltbk + σe−iωltb†k

)
(5.2)

Where HE is unaffected and ∆ = ε − ωl is the detuning of the laser from the atomic
transition frequency. In calculating this transformed Hamiltonian we have taken advan-

tage of the transformation of the unitary operator into the form: UR(t) = ei
ωl
2
σzt =

ei
ωl
2
t |e〉 〈e|+ e−i

ωl
2
t |g〉 〈g|.

The exponential terms in Eq. (5.2) can be neglected, since they represent fast oscillating
factors that average to unity. The transformed Hamiltonian then simplifies to:

H
′

=
∆

2
σz +

Ω

2
σx +

∑
k

ωkb
†
kbk +

∑
k

gk

(
σ†eiωltbk + σe−iωltb†k

)
(5.3)

In order to make use of the general expression of the Born-Markov master equation
(2.23), we need to move the rotated interaction Hamiltonian into the interaction pic-

ture, with respect to the rotation free system and environment Hamiltonians: H̃
′
I =

ei(HS+HE)tH
′
Ie
−i(HS+HE)t. We first write it as:

H̃
′
I(t) =

∑
k

gk

(
σ̃†(t)eiωltbke−iωkt + σ̃(t)e−iωltb†keiωkt

)
(5.4)

where σ̃(t) = U †S′(t)σUS′(t) = eiHS′ tσe−iHS′ t. Comparing this with (2.19) we see that:

A1(t) = σ̃†(t)eiωlt, A2(t) = σ̃(t)e−iωlt, B1(t) =
∑

k gkbke−iωkt and B2(t) =
∑

k gkb
†
keiωkt.

In order to proceed, we need to derive σ̃ and σ̃† . This can be done by diagonalizing the
rotated system Hamiltonian and writing it in its eigenstate basis:

HS′ =
1

2

(
∆ Ω
Ω −∆

)
=

1

2
V

(
Λ 0
0 −Λ

)
V −1 = Λ

1

2
(|+Λ〉 〈+Λ| − |−Λ〉 〈−Λ|) (5.5)



36 5 Master equation from first principles

Where ±1
2Λ = ±1

2

√
∆2 + Ω2 are the eigenvalues of HS′ , the invertible matrix V is com-

posed of the normalized eigenvectors |+Λ〉 = V |e〉 and |−Λ〉 = V |g〉 of HS′ . We can use

this representation to write US′ (t) = e−iHS′ t = |+Λ〉 〈+Λ| e−i
1
2

Λt + |−Λ〉 〈−Λ| ei
1
2

Λt, from
which we see that the operators A1(t) and A2(t) become:

A1(t) = σ̃†(t)eiωlt =
∑
i

Xie
iωit (5.6)

A2(t) = σ̃(t)e−iωlt =
∑
i

Yie
−iωit (5.7)

where the sums run over i = 1,2,3 with ω1 = ωl, ω2 = ωl + Λ, and ω3 = ωl − Λ. Which
means that the operators A1(t) and A2(t) have three Fourier components each, with fre-
quencies ωl and ωl±Λ. The operators Xi are respectively X1 =

(
|+Λ〉 〈+Λ|σ† |+Λ〉 〈+Λ|+

|−Λ〉 〈−Λ|σ† |−Λ〉 〈−Λ|
)
, X2 = |+Λ〉 〈+Λ|σ† |−Λ〉 〈−Λ| and X3 = |−Λ〉 〈−Λ|σ† |+Λ〉 〈+Λ|,

and the complex conjugate of these gives the operators of Yi . Its also worth noting that∑
iXi = σ† and

∑
i Yi = σ.

In order to solve the Born-Markov master equation (2.23) we need to derive the corre-
lation functions Cαβ(τ). This can only be done if we know the density operator of the
environment ρE . We will consider a general case where the environment is assumed to be
in thermal equilibrium, then the density operator becomes:

ρE =
e−HE/kBT

Tr
(
e−HE/kBT

) (5.8)

where kB is the Boltzmann constant, and T is the environmental temperature. For this
density operator the correlation functions become:

C11(τ) = 〈B1(τ)B1(0)〉 (5.9)

=
∑
kk’

gkgk’e
−iωkτ 〈bkbk’〉

= 0

C12(τ) = 〈B1(τ)B2(0)〉 (5.10)

=
∑
kk’

gkg
∗
k’e
−iωkτ

〈
bkb
†
k’

〉
E

=
∑
k

|gk|2e−iωkτ (1 +N(ωk))

C22(τ) = 〈B2(τ)B2(0)〉 (5.11)

=
∑
kk’

g∗kg
∗
k’e

iωkτ
〈
b†kb
†
k’

〉
E

= 0

C21(τ) = 〈B2(τ)B1(0)〉 (5.12)

=
∑
kk’

g∗kgk’e
iωkτ

〈
b†kbk’

〉
E

=
∑
k

|gk|2eiωkτN(ωk)

where N(ωk) =
(
eωk/kBT − 1

)−1
is the Bose-Einstein occupation number. Here we have

used the following: 〈bkbk’〉 =
〈
b†kb
†
k’

〉
= 0,

〈
b†kbk’

〉
= δkk’N(ωk) and

〈
bkb
†
k’

〉
= δkk’(1 +

N(ωk)). In substituting these correlation functions into the master equation (2.23) we
first need to convert them into an integral instead of a sum. Both C11(τ) and C22(τ) of
course stay the same, but the other two become:
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C12(τ) =

∫ ∞
0

J(ω)e−iωτ (1 +N(ω))dω (5.13)

C21(τ) =

∫ ∞
0

J(ω)eiωτ (N(ω))dω (5.14)

where the spectral density J(ω) is defined as:

J(ω) =
∑
k

|gk|2δ(ω − ωk) = D(ω)|g(ω)|2 (5.15)

This spectral density function measures the coupling strength between the system and
environment. Substituting everything into the Schrödinger picture Born-Markov master
equation (2.23) we find:

dρ

dt
=− i [HS , ρS(t)]−

∫ ∞
0

([A1, A2(−τ)ρS(t)]C12(τ) + [ρS(t)A2(−τ), A1]C21(−τ))

+ ([A2, A1(−τ)ρS(t)]C21(τ) + [ρS(t)A1(−τ), A2]C12(−τ)) dτ

=− i [HS , ρS(t)]−
∫ ∞

0
([A1, A2(−τ)ρS(t)]C12(τ) + [A2, A1(−τ)ρS(t)]C21(τ) + h.c.) dτ

=− i
[
HS′ , ρS(t)

]
−

3∑
i

∫ ∞
0

([
σ†,YiρS(t)

]
eiωiτC12(τ) + [σ,XiρS(t)] e−iωiτC21(τ) + h.c.

)
dτ

(5.16)

The six integrals in the master equation (5.16), representing environment response func-
tions, become:

K12 (−ωi) =

∫ ∞
0

eiωiτC12(τ)dτ =

∫ ∞
0

∫ ∞
0

(
ei(ωi−ω)τJ(ω)(1 +N(ω))

)
dτdω

=
1

2
Γ12 (−ωi) + iS12 (−ωi) (5.17)

and

K21 (ωi) =

∫ ∞
0

e−iωiτC21(τ)dτ =

∫ ∞
0

∫ ∞
0

(
e−i(ωi−ω)τJ(ω)N(ω)

)
dτdω

=
1

2
Γ21 (ωi) + iS21 (ωi) (5.18)

It will be shown that the imaginary parts of the solutions will give rise to environment-
induced energy shifts for the system, while the real parts will cause dissipation of the
system. It is worth noting that both depend on the attained Fourier frequencies ωi, which
respectively depend on ωl and Λ =

√
∆2 + Ω2. This means that both the energy shifts and

dissipation rates depend on the detuning ∆, the Rabi frequency Ω and also directly on the
laser frequency ωl. The most interesting variable of these three is the Rabi frequency Ω,
since it makes it possible to change the dissipation of the system by varying the amplitude
of the driving light field. Since the Γ (x)-function becomes approximately zero in the cases

x ≈ 0 and x � 0, it is even possible to cut out the dissipation rates Γ
(
ωl ±

√
∆2 + Ω2

)
when Λ ∼ ωl. The problem is though that there is always going to be a dissipation rate
that solely depends on the laser frequency Γ (ωl), which experimentalists generally can
not vary much. This means that even though it is possible to change - and even cut out
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- the dissipation rates Γ
(
ωl ±

√
∆2 + Ω2

)
, there will always be a dissipation rate that

depends on ωl. For the two-level system, it is therefore not possible to totally cut out the
dissipation.
Generally speaking the energy shifts and dissipation rates are not constant in time, which
this solution shows. The time dependence is lost by the Markov approximation, which is
inherited in our calculation. The Markov approximation brings the equation into a time
local form, such that the dynamics does not depend on the past history.

Let us now consider the response functions in more detail and end up with a more rigorous
form of the master equation. The integrals for the response functions can be evaluated
by the use of the Sokhotskyi-Plemelj theorem in exponential form (also called a Plemelj
formula), given by: ∫ ∞

0
e±iεtdt = πδ(ε)± iP

ε
(5.19)

The integral would equal a Dirac-delta function if it had started from negative infinity,
but since it does not, the Cauchy principal value P is introduced to compensate for this.

To make the master equation (5.16) more manageable, we will apply some simplifications.
Since the general case is that ωl � ∆,Ω we can approximate K12 (−ωi) = K12 (−ωl) and
similar K21 (ωi) = K21 (ωl) for all i=1,2,3. With this definition we arrive at:

K12 (−ωl) =

∫ ∞
0

(
πδ(ωl − ω) + i

P
ωl − ω

)
J(ω)(1 +N(ω))dω

= πJ(ωl)(1 +N(ωl)) + iP
∫ ∞

0

J(ω)(1 +N(ω))

ωl − ω
dω

=
1

2
Γ12(−ωl) + iS12 (−ωl) (5.20)

and

K21 (ωl) =

∫ ∞
0

(
πδ(ωl − ω)− i P

ωl − ω

)
J(ω)N(ω)dω

= πJ(ωl)N(ωl)− iP
∫ ∞

0

J(ω)N(ω)

ωl − ω
dω

=
1

2
Γ21(ωl)− iS21 (ωl) (5.21)

Substituting the response functions into the master equation (5.16) and expand out the
commutators, we arrive at:

dρS(t)

dt
=− i

[
HS′ +HLS(ωl), ρS(t)

]
+ Γ12(−ωl)(σρS(t)σ† − 1

2

{
σ†σ, ρS(t)

}
)︸ ︷︷ ︸

spontaneous and stimulated emission

+ Γ21(ωl)(σρS(t)σ† − 1

2

{
σσ†, ρS(t)

}
)︸ ︷︷ ︸

Radiation absorption

(5.22)

where {a, b} = ab+ba is the anticommutator. The first term describes the unitary coherent
evolution of the system, where HLS(ωl) = S12(−ωl)σσ†+S21(ωl)σ

†σ represents an energy
shift of the ground to excited state energy; generally known as the Lamb shift 1. The last

1This is not the Lamb shift in its full form, since terms get lost by making the rotating-wave approxi-
mation.
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two terms describe the non-unitary system dynamics that arise due to the environmental
influence. The first non-unitary term describes the decay of the system (from the excited
state to the ground state) by respectively spontaneous or stimulated emission of radiation
into the environment, with rates πJ(ωl) and πJ(ωl)N(ωl). Since the rate of the stimulated
emission process is πJ(ωl)N(ωl), it requires occupation of environmental states at energy
matching ωl. The spontaneous emission however is independent of the occupation number
N(ωl) and can therefore always occur. The last non-unitary term describes the radiation
absorption of the system from the environment, which has the rate πJ(ωl)N(ωl) and is
therefore also dependent on the occupation number.

5.2 Pure dephasing with driving

We will now briefly derive the master equation for a two-level QD undergoing pure-
dephasing, while being driven by a laser with frequency ωl and coupling strength Ω. The
primary difference with this model and the spontaneous emission model, is the environ-
ment. Instead of comprising of photons, the environment comprises of a bath of phonons,
which is quantized harmonic vibrations of crystalline solids, and can also be treated as
harmonic oscillators. The corresponding Hamiltonian is given by:

H = HS +HE +HI

=
ε

2
σz + Ω cos (ωlt)σx +

∑
k

ωkb
†
kbk +

∑
k

σzgk

(
bk + b†k

)
(5.23)

As can be seen, the interaction Hamiltonian is different from the spontaneous emission
case, since the environment is different. The first step is again to put the Hamiltonian
into a frame rotating at the laser frequency ωl, which becomes:

H
′

=
∆

2
σz +

Ω

2
σx +

∑
k

ωkb
†
kbk +

∑
k

σzgk

(
bk + b†k

)
(5.24)

The crucial point here is that the transformation does not change the interaction Hamil-
tonian, which now needs to be moved into the interaction, with respect to the rotation
free Hamiltonians:

H̃
′
I = H̃I =

∑
k

σ̃z(t)gk

(
bke−iωkt + b†keiωkt

)
(5.25)

where σ̃z(t) = eiHS′ tσze
−iH

S
′ t. Since the detuning ∆ generally is very small, so that

Ω� ∆, we can approximate HS′ = Ω
2 σx. This means that:

σ̃z(t) =ei
Ω
2
σxtσze

−iΩ
2
σxt =

(
ei

Ω
2
t |+〉 〈+|+ e−i

Ω
2
t |−〉 〈−|

)
σz

(
e−i

Ω
2
t |+〉 〈+|+ ei

Ω
2
t |−〉 〈−|

)
=e−iΩτ |−〉 〈+|+ eiΩτ |+〉 〈−|

where |±〉 = 1√
2

(|e〉 ± |g〉). Comparing with (2.19), we can deduce: A1(t) = A2(t) =

e−iΩt |−〉 〈+|+ eiΩt |+〉 〈−|, B1(t) =
∑

k gkbke−iωkt and B2(t) =
∑

k gkb
†
keiωkt. Since B1(t)

and B2(t) are the same as the ones in the previous case with spontaneous emission, the
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correlation functions Cαβ become respectively (5.13) and (5.14). Substituting everything
into the Schrödinger picture Born-Markov master equation (2.23) we find:

dρ

dt
=− i [HS , ρS(t)]−

∫ ∞
0

([A1, A2(−τ)ρS(t)]C12(τ) + [A2, A1(−τ)ρS(t)]C21(τ) + h.c.) dτ

=− i
[
HS′ , ρS(t)

]
−
∫ ∞

0

([
σz,
(
eiΩτ |−〉 〈+|+ e−iΩτ |+〉 〈−|

)
ρS(t)

]
C12(τ) (5.26)

+
[
σz,
(
eiΩτ |−〉 〈+|+ e−iΩτ |+〉 〈−|

)
ρS(t)

]
C21(τ) + h.c.

)
dτ

The response functions in this case become – the derivation is done briefly, since it was
done rigorously in the previous section:

K12 (±Ω) =

∫ ∞
0

e∓iΩτC12(τ)dτ =

{
−iS12 (Ω) for K12 (Ω)
1
2γ12 (−Ω) + iS12 (−Ω) for K12 (−Ω)

(5.27)

and

K21 (±Ω) =

∫ ∞
0

e∓iΩτC21(τ)dτ =

{
1
2γ21 (Ω)− iS21 (Ω) for K21 (Ω)

iS21 (−Ω) for K21 (−Ω)
(5.28)

where

S12 (±Ω) =P
∫ ∞

0

J(ω)(1 +N(ω))

Ω± ω
dω, γ12 (−Ω) = 2πJ(Ω)(1 +N(Ω)) (5.29)

S21 (±Ω) =P
∫ ∞

0

J(ω)N(ω)

Ω± ω
dω, γ21 (Ω) = 2πJ(Ω)N(Ω) (5.30)

Note that the response functions K12(Ω) and K21(Ω) do not have any dissipation rates γ,
because we impose J(−Ω) = 0, which holds true for any physical model of J(ω).

5.2.1 QZE: pure dephasing with strong ’continuous coupling’

In contrast to the spontaneous emission case, the dissipation rates only depend of
the Rabi frequency γ(±Ω). Hence it is possible to change the total dissipation of the
system only by varying the amplitude of the driving laser. In this case it is even
possible to completely cut out the dissipation of the system by making the Rabi
frequency Ω large enough. This can be seen visually by plotting the dissipation as a
function of the Rabi frequency, as seen in figure (5.1). This fact alone means that it is
possible to obtain the QZE for a QD undergoing pure dephasing, only by influencing
the QD by a strong ’continuous coupling’.

Substituting the response functions into (5.26) and expanding out the commutators:

dρS
dt

=− i
([
HS′ +HLS(Ω), ρS(t)

]
− σz [Hd(Ω), ρS(t)]σ†z

)
(5.31)

+
1

2
γ12(−Ω)

(
σz {|+〉 〈+| , ρS(t)}σ†z − {|+〉 〈+| , ρS(t)}

)
+

1

2
γ21(Ω)

(
σz {|−〉 〈−| , ρS(t)}σ†z − {|−〉 〈−| , ρS(t)}

)
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Figure 5.1: Graph showing how the dissipation rate γ depends on the coupling strength Ω. We have
used α = 0.03 ps2, ωc = 2.2 ps−1 and T = 20 K.

where HLS(Ω) = Hd(Ω) = (S21(−Ω) + S12(−Ω)) |+〉 〈+| − (S21(Ω) + S12(Ω)) |−〉 〈−| rep-
resents a Lamb shift – presented as HLS – but also partly works as a source of decoherence
– presented as Hd. In other words, the first term gives rise to coherent unitary dynamics
of the system, while the last three give rise to non-unitary system dynamics that arise
due to the environmental influence. The non-unitary terms lead to the dephasing of the
QD, which ultimately makes the quantum state more mixed (classical). This final expres-
sion is not in Lindblad form, but it resembles a more detailed and rigorous form of the
Born-Markov master equation. With the help of this expression, we will be able to make
a better physical description of how the QD undergoes pure dephasing, which potentially
can improve the study of the QZE in the cases of ’pure dephasing’ models. The two first
terms represent coherent unitary evolution of the system.

5.3 Three level system: spontaneous emission with driving

We are now going one step further and look at specific case of a three level QD, driven by a
electromagnetic field in its lower sub-level - see (4.22a). The environment is again modelled
as a bath of independent harmonic oscillators, and the total Hamiltonian corresponds to:

H =ωp |p〉 〈p|+ ωe |e〉 〈e|+ Ωeg cos (ωlt)
(
σxeg

)
+
∑
k

ωkb
†
kbk +

∑
k

gk

(
σ†pebk + σpeb

†
k

)
(5.32)

where the zero point energy is set to be at the ground state. The system Hamiltonian (first
three terms) represents the three level system driven by the classical field with frequency
ωl that couples the ground |g〉 and the excited |e〉 states with coupling strength Ωeg. The
pump state |p〉 has energy ωp and the excited state has energy ωe. The bath of harmonic
oscillators (fourth term) is the same as for the previous cases. The interaction Hamiltonian
(last term) couples the subspace comprising of the excited and the pump state with the

harmonic oscillators by the coupling constants gk, where σpe = |e〉 〈p| and σ†pe = |p〉 〈e|. It
should also be noted that σxeg = |g〉 〈e|+ |e〉 〈g| and σxpe = |e〉 〈p|+ |p〉 〈e|.
The first step in deriving the master equation for this system, is again to put the Hamil-
tonian into a frame rotating at the laser frequency, with the unitary operator UR(t) =
eiωl(|p〉〈p|+|e〉〈e|)t = |e〉 〈e| eiωlt + |p〉 〈p| eiωlt + |g〉 〈g|. This transformed Hamiltonian be-
comes:
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H
′

=∆pl |p〉 〈p|+ ∆el |e〉 〈e|+
Ωeg

2
σxeg +

∑
k

ωkb
†
kbk +

∑
k

gk

(
σ†pebk + σpeb

†
k

)
(5.33)

where ∆pl = ωp − ωl and ∆el = ωe − ωl. As can be seen, in contrast to the two level case
with spontaneous emission, the interaction Hamiltonian is not affected by the rotating
frame transformation. As done previously, we now move the interaction Hamiltonian into
the interaction picture:

H̃I =
∑
k

gk

(
σ̃+pe(t)bke−iωkt + σ̃−pe(t)b

†
keiωkt

)
(5.34)

where σ̃±pe(t) = U †S′(t)σ±peUS′(t) = eiHS′ tσ±pee
−iHS′ t. Comparing this with (2.19) we

see that: A1(t) = σ̃+pe , A2(t) = σ̃+pe , B1(t) =
∑

k gkbke−iωkt and B2(t) =
∑

k gkb
†
keiωkt.

Comparing A1(t) and A2(t) with the ones we got in the two-level system with spontaneous
emission (5.7), we see that the only difference is the lack of rotational exponential factors
e±iωlt.

Before going any further, we simplify the problem by specifying the system even more,
making the detuning ∆el = 0. This means that we are driving the system with a laser
resonant with the lower subsystem of the three level system, which is often the case
experimentally; i.e. ωl = ωe and ∆pl = ωp − ωe. The derivation of σ̃±pe then becomes
much easier, which is done by first diagonalizing the rotated system Hamiltonian:

Hs′ =

 ∆pl 0 0
0 0 1

2Ωeg

0 1
2Ωeg 0

 = V

 ∆pl 0 0
0 1

2Ωeg 0
0 0 −1

2Ωeg

V −1

=∆pl |∆pl〉 〈∆pl|+
Ωeg

2
(|+Ωeg〉 〈+Ωeg| − |−Ωeg〉 〈−Ωeg|) (5.35)

where ±1
2Ωeg and ∆pl, are the eigenvalues of HS′ , V is composed of the normalized

eigenvectors |∆pl〉 = V |p〉, |+Ωeg〉 = V |e〉 and |−Ωeg〉 = V |g〉 for HS′ . Using this

representation to write US′ (t) = e−iHS′ t = e−i∆plt |∆pl〉 〈∆pl| + e−i
Ωeg

2
t |+Ωeg〉 〈+Ωeg| +

ei
Ωeg

2
t |−Ωeg〉 〈−Ωeg| the operators A1(t) and A2(t) become:

A1(t) = σ̃+pe =
∑
i

Xie
iωit A2(t) = σ̃−pe =

∑
i

Yie
−iωit (5.36)

The sums run over the Fourier components i=1, 2 with frequencies ω1 =
(
∆pl − 1

2Ωeg

)
and

ω2 =
(
∆pl + 1

2Ωeg

)
. The operators Xi are respectively: X1 = |∆pl〉 〈∆pl|σ†pe |Ωeg〉 〈Ωeg|

and X2 = |∆pl〉 〈∆pl|σ†pe |−Ωeg〉 〈−Ωeg|, and the complex conjugate of these gives the op-

erators of Yi. As in the two-level case,
∑

iXi = σ†pe and
∑

i Yi = σpe.

Since the operators B1(t) and B2(t) are the same in the two level case with spontaneous
emission, the response functions K12 (ωi) and K21 (−ωi) end up also being the same: (5.17)
and (5.18) - though depending on the Fourier frequencies ωi that we just found. From this
we can therefore already conclude that the dissipation and the energy shifts in the three
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level case depend on the Rabi frequency of the system Ωeg and on the detuning ∆el. As
will be stated below, the dissipation rates for the system become: 1

2Γ
(
∆pl ± 1

2Ωeg

)
. The

situation is therefore almost exactly the same as for the two-level case, the only difference
being that there is no dissipation rate that directly depends on the classical driving field
frequency Γ (ωl). The frequency ωl only appears implicitly in the detuning for the three
level case. This ultimately means that the dissipation of the system can be altered just
by varying the Rabi frequency Ωeg. The Γ(x)-function is approximately the same as for
the pure dephasing case – seen on figure (5.1) – and becomes approximately zero in the
cases x ≈ 0 and x � 0. It is therefore possible to turn off the dissipation for the three
level system just by making Ωeg large enough.

This result can be explained physically as being a consequence of electromagnetically
induced transparency[30]. Driving a system with an alternating electromagnetic field in-
duced shifts in its energy spectrum that increase with the strength of the applied field.
This effect is known as the AC Stark effect [31]. In our case, the strong coupling between
e and g shifts the states into two so-called dressed states |±〉 = 1√

2
(|e〉 ± |g〉) of energy

±Ωeg. If Ωeg is sufficiently large, the spontaneous transitions between |p〉 and |+〉 will not
be in resonance. Hence, the pe-subsystem becomes transparent so that the transition can
not be made. As discussed in [30] the transparency of the pe-subsystem also depends on
the interference of the two dressed states, but this will not be further explained here since
it is outside the scope of this report.

We now want to consider the problem in more detail in order to end up with a usable
rigorous form of the master equation. Substituting A1(t), A2(t) into the Schrödinger
picture Born-Markov master equation (2.23) we find:

dρ

dt
=− i [HS , ρS(t)]−

∫ ∞
0

([
σ†pe,

(
e
i
(

∆pl−
Ωeg

2

)
t
Y1 + e

i
(

∆pl+
Ωeg

2

)
t
Y2

)
ρS(t)

]
C12(τ)

+

[
σpe,

(
e
−i
(

∆pl−
Ωeg

2

)
t
X1 + e

−i
(

∆pl+
Ωeg

2

)
t
X2

)
ρS(t)

]
C21(τ) + h.c.

)
dτ

(5.37)

The response functions in this case, where ξ± = ∆pl ± Ωeg
2 , are given by

K12 (−ξ±) =

∫ ∞
0

eiξ±τC12(τ)dτ =

{
1
2Γ12 (−ξ+) + iS12 (−ξ+) , for K12 (−ξ+)
1
2Γ12 (−ξ−) + iS12 (−ξ−) , for K12 (−ξ−)

(5.38)

and

K21 (ξ±) =

∫ ∞
0

e−iξ±τC21(τ)dτ =

{
1
2Γ21 (ξ+)− iS21 (ξ+) , for K21 (ξ+)
1
2Γ21 (ξ−)− iS21 (ξ−) , for K21 (ξ−)

(5.39)

where

S12 (−ξ±) =P
∫ ∞

0

J(ω)(1 +N(ω))

ξ± − ω
dω, Γ12 (−ξ±) = 2πJ(ξ±)(1 +N(ξ±)) (5.40)

S21 (ξ±) =P
∫ ∞

0

J(ω)N(ω)

ξ± − ω
dω, Γ21 (ξ±) = 2πJ(ξ±)N(ξ±) (5.41)

We want to study two cases for the three level system. The first is a general case for
physical systems, where it is anticipated that ∆pl � Ωeg. This makes it possible to
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approximate K12(−ξ±) = K12(−∆pl) and K21(ξ±) = K21(∆pl). Substituting the resulting
response functions into the master equation (5.37) and expanding our the commutators,
we for this case get:

dρS(t)

dt
=− i

[
HS′ +HLS(∆pl), ρS(t)

]
+ Γ12(−∆pl)(σpeρS(t)σ†pe −

1

2

{
σ†peσpe, ρS(t)

}
)︸ ︷︷ ︸

spontaneous and stimulated emission

+ Γ21(∆pl)(σpeρS(t)σ†pe −
1

2

{
σpeσ

†
pe, ρS(t)

}
)︸ ︷︷ ︸

Radiation absorption

(5.42)

where HLS = S12(−∆pl)σpeσ
†
pe + S21(∆pl)σ

†
peσpe is the Lamb shift. The similarity with

the two-level case undergoing spontaneous emission is evident. The first term describes
the unitary coherent evolution of the system, while the last two terms describe the non-
unitary system dynamics. The decay of the three-level system from the pump state to
the excited state by either spontaneous or stimulated emission processes is represented
with the first non-unitary term, with rates proportional to πJ(∆pl) and πJ(∆pl)N(∆pl)
respectively. The spontaneous emission is independent of the occupation number N(∆pl)
and can therefore always occur. Likewise, the final term describes absorption processes,
and is given by the rate proportional to πJ(∆pl)N(∆pl), which on the contrary requires
occupation of environmental states matching the energy ∆pl.

The second case is theoretical, since we hypothesize that
Ωeg

2 > ∆pl, which may not be true
in physical systems. This case is interesting, since it makes it possible to study the above
mentioned effects of having a large coupling strength, which can turn off the dissipation
for the system. This relationship between Ωeg and ∆pl, annihilates half of the dissipation
rates, namely γ12(±ξ−). The detuning ∆pl = ωp − ωe will typically be large – generally
at least ∼ 1 eV – and if our requirement is that Ωeg has to be twice as big, this means

that N(ξ+) =
(
eξ+/kBT − 1

)−1 ≈ 0 for any temperature T under about 1000 K. Applying
these approximations and substituting the resulting response functions into (5.37) leaves
us with:

dρS(t)

dt
=− i

[
HS′ , ρS(t)

]
− iS12(−ξ−)

[
σ†pe, Y1ρS(t)

]
(5.43)

−
(

1

2
Γ12(−ξ+) + iS12(−ξ+)

)[
σ†pe, Y2ρS(t)

]
+ h.c.

This is not an aesthetic expression, but it makes it possible to study the QZE by strong
coupling in three-level systems – see sec. 6.2.2.

5.4 Three level system: multiple Rabi oscillations

The motive of this section is to further discuss the notion that driving a system strongly
can substantially reduce its dissipation – even entirely. As stated, the reduced dissipation
can be physically explained as being a result of the AC-Stark splitting of states, which is
created by the coupling laser. Instead of having a system having spontaneous emission
between the pump level |p〉 and the excited level |e〉, we will discuss a three level QD
driven by two distinct Rabi oscillations in its respective sub-systems - see (4.22b). It will
be shown that this system, consisting of only unitary evolution, will also show the same
characteristic behaviour when it is being strongly driven in one of its sub-systems.
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The Hamiltonian for the considered system driven by two different laser fields ω1 and ω2

is given by:

H(t) = ωp |p〉 〈p|+ ωe |e〉 〈e|+ Ωpe cos (ω1t)σxpe + Ωeg cos (ω2t)σxeg (5.44)

where the zero point energy is set to be at the ground state. The Hamiltonian describes
a closed system, completely described in terms of the time-dependent Hamiltonian (2.6),
even though it is not completely isolated from environmental influence. As stated, this
Hamiltonian has two Rabi oscillation, with the coupling strengths Ωpe and Ωeg for respec-
tively the upper- and lower sub-system, driven separately by the laser frequencies ω1 and
ω2.

As always, the first step is to put the Hamiltonian into a rotating frame. For this case,
we are using the unitary operator UR(t) = ei(ω1|e〉〈e|+ω2|p〉〈p|)t = |e〉 〈e| eiω1t + |p〉 〈p| eiω2t.
The corresponding rotated Hamiltonian becomes:

H
′
(t) = ∆p2 |p〉 〈p|+ ∆e1 |e〉 〈e|+

Ωpe

2
σxpe +

Ωeg

2
σxeg (5.45)

where ∆p2 = ωp − ω2 and ∆e1 = ωe − ω1.

We will now consider the case where the coupling strength for the lower level Ωeg is being
increased, while Ωpe is being held constant. For the sake of simplicity, we theorize that
the lasers are finely tuned to match the respective energy levels of the system, such that
both detunings, ∆p2 and ∆e1 are set to zero.
It is not easy to see from the general Schrödinger equation (2.6) how the system will react
to a stronger drive. In order to explain how the system reacts to the stronger drive of
the lower sub-system, it is necessary to write the system Hamiltonian in the basis of the
two dressed levels that form the complete orthogonal set {|p〉 , |±〉 = 1√

2
(|e〉 ± |g〉)}. Since

I = |p〉 〈p| + |e〉 〈e| + |g〉 〈g| = |p〉 〈p| + |+〉 〈+| + |−〉 〈−|, we can transform the system
Hamiltonian into the new basis by the operation:

IH ′I = (|p〉 〈p|+ |+〉 〈+|+ |−〉 〈−|) 1

2

 0 Ωpe 0
Ωpe 0 Ωeg

0 Ωeg 0

 (|p〉 〈p|+ |+〉 〈+|+ |−〉 〈−|)

(5.46)

=
1

2
√

2

 0 Ωpe Ωpe

Ωpe

√
2Ωeg 0

Ωpe 0 −
√

2Ωeg

 (5.47)

From this we can conclude that an increase in the coupling strength for the lower sub-
system Ωeg will step-up the influence of the two states |±〉. The effect of driving the lower
sub-system more strongly is thus a shift of the states |e〉 and |g〉 to the dressed states
|±〉. As for the case with spontaneous emission, if Ωeg is sufficiently large the transitions
between |p〉 and |+〉 will not be in resonance with the source Ωpe that is causing the
driving. Hence, the pe-subsystem becomes transparent and no driving occurs. We will
analyze this model in respect to the QZE in sec. 4.5.2.
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5.5 Justification of Lindblad formalism

This section is meant to justify the Lindbald formalism, which we made use of in chapter
(4) to describe QZE in both two- and three-level QD’s in open systems. We studied
QZE in a two-level QD undergoing both spontaneous emission and pure dephasing. For
the three-level QD we briefly discussed a specific case undergoing spontaneous emission,
driven by a laser in only its lower level. A rigorous derivation of the Born-Markovs master
equation for all these cases was done in the previous sections.

Spontaneous emission for two-level QD

The rigorous form of the master equation for a two-level QD given by (5.22) will yield
the Lindblad form, by making some further approximations. Typically the laser frequency
ωl is approximately equal to the ground to excited state energies, which are of the order
ε ∼ 1 eV. At room temperature we have kBT ∼ 25 meV, which leaves us with the fraction
ωl
kBT
� 1. In considering the definition of the occupation of states N(ωl) =

(
eωl/kBT − 1

)−1

this means that even at these elevated temperatures thermal occupation of states is low
and we can approximate N(ωl) ≈ 0. The shift in energy of the system can often also be
neglected since they often are very small, so HLS ≈ 0. With these approximations get the
master equation in Lindblad form:

dρS
dt

=− i
[
HS′ , ρS(t)

]
+ Γ(σρS(t)σ† − 1

2

{
σ†σ, ρS(t)

}
)︸ ︷︷ ︸

spontaneous emission

=− i
[
HS′ , ρS(t)

]
+ ΓL(σ) (5.48)

where Γ = 2πJ(ωl).

Dephasing for two-level QD

For the rigorous pure dephasing form (5.31), it follows that the driving frequency Ω typ-
ically is of the order Ω = 0.1ps−1 which corresponds to approximately 1 meV. QDs
undergoing pure dephasing are usually considered in the regime of low temperatures, and
since kBT ∼ 200 − 300 meV in temperatures reaching from 30-50 K, we have Ω

kBT
� 1.

This means that N(Ω) ≈ (N(Ω) + 1) or equivalently γ(−Ω) = γ(Ω). If the energy shifts
again are considered small S(±Ω) ≈ 0, these approximations yield the master equation in
Lindblad form:

dρS
dt

=− i
[
HS′ , ρS(t)

]
+ γ

(
σzρS(t)σ†z −

1

2

{
σ†zσz, ρS(t)

})
︸ ︷︷ ︸

Dephasing term

=− i
[
HS′ , ρS(t)

]
+ γL(σz) (5.49)

where γ = 2πJ(Ω). It should also be remarked that the resulting master equation is

presented in its lindblad form, but can be further reduced since 1
2

{
σ†zσz, ρS(t)

}
= ρS(t).

5.5.1 Spontaneous emission for three-level QD

The Lindblad form for the three level QD undergoing spontaneous emission can be found
by making approximations on the derived master equation (5.42). The approximations
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are the same as those for the two-level case with spontaneous emission, the only difference
being that ∆pl ∼ 1 eV instead of ωl. Ultimately this means that we arrive at the Lindblad
form:

dρS(t)

dt
=− i

[
HS′ , ρS(t)

]
+ Γ(σpeρS(t)σ†pe −

1

2

{
σ†peσpe, ρS(t)

}
)︸ ︷︷ ︸

spontaneous emission

=− i
[
HS′ , ρS(t)

]
+ ΓL(σpe) (5.50)

where Γ = 2πJ(∆pl).

5.6 Non-Markovian master equation

In the derivation leading to the master equations (5.22) and (5.31), we now want to undo
the Markov approximation. This will give a new expression for dρ

dt from which we can
obtain time-dependent models for Γ(t) and γ(t). These models have already been used in
the calculations based on the Lindblad formalism in sec. 4.2.2.

Time-dependent spontaneous emission

The result of removing the Markov approximation is simply that the upper integration
limit in 5.16 is not τ =∞ but τ = t. Thus,

dρ

dt
= −i [HS , ρS(t)]−

3∑
i

∫ t

0

(
[σ+,YiρS(t)] eiωiτC12(τ) + [σ−,XiρS(t)] e−iωiτC21(τ) + h.c.

)
dτ

(5.51)

Again we use the simplification ωl � Ω,∆, which holds true for spontaneous emission,
whereby the Fourier components ω1, ω2 and ω3 become equal to ωl. This allows us to
write (5.51) as

dρ

dt
= −i [HS , ρS(t)]−

∫ t

0

(
[σ+, σ−ρS(t)] eiωlτC12(τ) + [σ−, σ+ρS(t)] e−iωlτC21(τ) + h.c.

)
dτ

= −i [HS , ρS(t)]−
(

[σ+, σ−ρS(t)]K12(−ωl) + [σ−, σ+ρS(t)]K21(ωl) + h.c.
)
. (5.52)

using the relations
∑

iXi = σ+ and
∑

i Yi = σ− and where the response functions can
easily be identified as

K12(−ωl, t) =

∫ t

0
eiωlτC12(τ) dτ =

1

2
Γ12(−ωl, t) + iS12(−ωl, t) (5.53)

K21(ωl, t) =

∫ t

0
e−iωlτC21(τ) dτ =

1

2
Γ21(ωl, t) + iS21(ωl, t). (5.54)
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Hence, due to the definitions we have Γab = 2 · Re(Kab), which can be rewritten by inserting
the derived correlation functions (5.13) and (5.14),

Γ12(−ωl, t) = 2 · Re(K12(−ωl, t)) = 2Re

(∫ t

0
eiωlτ

∫ ∞
0

J(ω)e−iωτ (1 +N(ω)) dωdτ

)
= 2

∫ t

0

∫ ∞
0

cos
(
τ(ωl − ω)

)
J(ω)(1 +N(ω)) dωdτ

= 2

∫ ∞
0

sin
(
t(ωl − ω)

)
ωl − ω

J(ω)(1 +N(ω)) dω, (5.55)

Γ21(ωl, t) = 2 · Re(K21(ωl)) = 2

∫ t

0
e−iωlτ

∫ ∞
0

J(ω)eiωτN(ω) dωdτ

= 2

∫ ∞
0

sin
(
t(ωl − ω)

)
ωl − ω

J(ω)N(ω) dω (5.56)

As used previously the approximation N(ω) ≈ 0 is appropriate at low temperatures, which
we assume for spontaneous emission, and consequently Γ21(ωl, t) ≈ 0. This leaves us with
only one dissipation rate for spontaneous emission,

Γ(ωl, t) = Γ12(ωl, t)|N(ω)→0 = 2

∫ ∞
0

sin
(
t(ωl − ω)

)
ωl − ω

J(ω) dω, (5.57)

where J(ω), for spontaneous emission, is assumed to be (ωc is the cut-off frequency)

J(ω) = ηω3e−ω/ωc . (5.58)

The relation (5.57) is the one that was used in section 4.2.2.

Time-dependent dephasing

As shown in the previous section the result of undoing the Born-Markov approximation
is that the response functions change their integration end limit to t. This also applies to
the dephasing master equation (5.26). We therefore have the four response functions

K12 (±Ω, t) =

∫ t

0
e∓iΩτC12(τ)dτ =

1

2
γ12(±Ω, t)∓ iS12(±Ω, t), (5.59)

K21 (±Ω, t) =

∫ t

0
ei∓ΩτC21(τ)dτ =

1

2
γ21(±Ω, t) + iS21(±Ω, t). (5.60)

In sec. 5.2 we found that γ12 was only valid for −Ω and γ21 only valid for +Ω. Even
though we do not use the Markov approximation now, one could expect we might have
the same tendency. This is indeed the case, which can be confirmed by computing all the
rates and noting that two of them always admit negative values for the rates, which is
unphysical. Thus, we find the

γ12(−Ω, t) = 2 · Re
(
K12(−Ω, t)

)
= 2 · Re

(∫ t

0
eiΩτ

∫ ∞
0

J(ω)e−iωτ (1 +N(ω)) dωdτ

)
= 2

∫ t

0

∫ ∞
0

cos
(
τ(Ω− ω)

)
J(ω)(1 +N(ω)) dωdτ

= 2

∫ ∞
0

sin
(
t(Ω− ω)

)
Ω− ω

J(ω)(1 +N(ω)) dω, (5.61)

γ21(Ω, t) = 2 · Re
(
K21(Ω, t)

)
= 2

∫ t

0
e−iΩτ

∫ ∞
0

J(ω)eiωτN(ω) dωdτ

= 2

∫ ∞
0

sin
(
t(Ω− ω)

)
Ω− ω

J(ω)N(ω) dω. (5.62)
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For dephasing we tend to use the high temperature approximation N(ω)+1→ N(ω), and
in this case we see that γ12(−Ω, t) = γ21(Ω, t). This leaves us again with a single form of
the dissipation rate

γ(Ω, t) = γ12(−Ω, t)|N(ω)+1→N(ω) = γ21(Ω, t)|N(ω)+1→N(ω)

= 2

∫ ∞
0

sin
(
t(Ω− ω)

)
Ω− ω

J(ω)N(ω) dω, (5.63)

where J(ω) for phonon coupling in a quantum dot can be described as [26]

J(ω) = αω3eω
2/ω2

c . (5.64)

The relation (5.63) is the one that was used in section 4.2.2.

The result (5.63) can be put into a more standardized form by rewriting the Bose-Einstein
occupation number N(ω) = (eωβ − 1)−1 – where β = ~/kBT – and inserting it into (5.63)

γ(Ω, t) = 2

∫ ∞
0

sin
(
t(ω − Ω)

)
ω − Ω

J(ω)
1

eωβ + 1
coth

(
1

2
ωβ

)
dω. (5.65)

Chaudry et al. [32] have derived an expression similar to (5.63) for a system governed by
pure dephasing. However, they define the dissipation rate as ρ(t) = ρ(0)e−γ̃(t), whereas
our definition of the dissipation rate stems from ∂tρ(t) = γ(t)ρ(t), and so we expect that
−γ̃(t) = γ(t). Differentiation of their expression indeed results in what corresponds to an
integral over J(ω) with a factor of coth (βω/2) sin(ωt)/ω. Note that Ω does not appear
here, because they have not implemented driving in their model, which corresponds to
setting Ω = 0 in our expression.
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Further analysis of QZE

6.1 Numerical solutions for dephasing master equation

We consider the solution to the dephasing master equation, (5.31), and compare it to the
previously used Lindblad master equation.

The solution to the Lindblad master equation is plotted on figure 6.1, and the solution
to the complete master equation is plotted on figure 6.2. For the Lindblad equation we
have adjusted the value of γ such that the two solutions are as similar as possible for
comparison purposes.

The spectral density function used in the computations of the complete master equation
is given by

J(ω) = αω3e−(ω/ωc)2
. (6.1)

This function corresponds to phonon coupling and is often used to model pure dephasing
[26].
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Figure 6.1: Numerical solution to the Lind-
blad master equation with dephasing and
driving, where γ = 0.4 ps−1 and Ω = 2 ps−1.

time [ps]

0 5 10 15

E
x
p
e

c
ta

ti
o
n
 v

a
lu

e

-1

-0.5

0

0.5

1

〈σx〉

〈σy〉

〈σz〉

Figure 6.2: Numerical solution to the com-
plete dephasing master equation (5.31). Pa-
rameters used are Ω = 2 ps−1, ωc = 2.2 ps−1,
α = 0.03 ps2 and T = 40K.

First of all the two solutions seem very similar, and thus, to some extent, the previously
used Lindblad master equations are numerically confirmed.

One difference that we immediately notice, however, is that the solution to the Lindblad
master equation does not have a non-zero evolution of 〈σx〉. This is due to the system
Hamiltonian being HS′ = Ω/2σx. In the high-temperature limit, Ω/kBT � 1, the steady
state value for 〈σx〉 becomes 0.
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The lack of this behaviour in figure 6.1 is a shortcoming of the Lindblad master equation.

Taking a closer look at the evolution of 〈σz〉 with slightly different values for T , Ω and γ,
we find that the Rabi oscillations are different due to Lamb shift – see figure 6.3.
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Figure 6.3: Numerical solution to the complete dephasing master equation (5.31) denoted CM and
the dephasing Lindblad master equation denoted LM. Parameters used are Ω = 3 ps−1, ωc = 2.2 ps−1,
α = 0.03 ps2, T = 15K and γ = 0.4 ps−1. Even though the value for Ω is the same for CM and LM
the Rabi frequencies differ. This is due to the Lamb shift described by the complete master equation.

6.2 Numerical solutions for spontaneous emission master
equation

6.2.1 Two-level system

We now consider numerical solutions to the complete master equation for spontaneous
emission, (5.22), and compare them to the corresponding solutions to the Lindblad master
equations. This has been done for a set of parameters, see figure 6.6. The solution to the
spontaneous emission Lindblad master equation is based on a chosen constant value for
Γ, while the value for η has been adjusted accordingly for best agreement between the
solutions.

In figure 4.50 and 4.50 we see that there is again a good overall agreement between the
solutions, but with a deviation in the steady state value of 〈σx〉.
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Figure 6.4: Numerical solution to the Lind-
blad master equation with spontaneous emis-
sion and driving, where Γ = 0.5 ps−1 and
Ω = 0.8 ps−1.
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Figure 6.5: Numerical solution to the com-
plete spontaneous emission master equation
(5.22). Parameters used are Ω = 0.8 ps−1,
ωc = 2.2 ps−1, η = 0.008 ps2 and T = 5K.

In figure 6.6 we have compared the z-component, 〈σz〉, of the two solutions and we once
again see a difference in the frequency of the Rabi oscillations due to Lamb shift. Addi-
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tionally, we also notice a shift in the steady state value of 〈σz〉. The Lindblad solution
also shows this behaviour for higher values of Γ, as we saw in figure 4.2.
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Figure 6.6: Numerical solution to the complete spontaneous emission master equation (5.22) denoted
CM and the spontaneous emission Lindblad master equation denoted LM. Parameters used are
Ω = 1 ps−1, ωc = 1 ps−1, η = 0.35 ps2, ωl = 10 ps−1 and T = 20K and Γ = 0.1 ps−1. The change in
frequency shows Lamb shift described by the complete master equation.

6.2.2 Three-level system

From equation (5.43) describing the system 4.22a (dissipation in upper subsystem and
driving in lower subsystem), we learned that the dissipation rate depends on the quantity
ξ = ∆pl + Ωeg/2, where ∆pl was set to ωp − ωe.
Since Γ12(ξ) is proportional to the spectral density J(ξ), and we know that the spectral
density tends to 0 at high values, we infer that Γ12(ξ)→ 0 for ξ →∞. Thus we can either
increase the driving frequency or the detuning to obtain the QZE as seen on figure 6.7
and 6.8.

In the master equation (5.43) it was assumed that
Ωeg

2 > ∆pl, so in order to not violate
this, we have set ∆pl to a constant low value on figure 6.7, and Ωeg to a constant high
value on figure 6.8.

Note that varying ∆pl simply means that we consider either higher or lower energy dif-
ferences between the |p〉 and |e〉 state (due to our choice ∆pl = ωp − ωe). In a physical
system ∆pl may be a constant rather than a variable.
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Figure 6.7: Numerical solution to the three-
level spontaneous emission master equation
with driving. The detuning is kept fixed,
∆pl = 6 ps−1, and the driving frequency Ω =
Ωeg is varied.
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Figure 6.8: Numerical solution to the three-
level spontaneous emission master equation
with driving. The driving frequency is kept
fixed, Ωeg = 25 ps−1, and the detuning ∆ =
∆pl is varied.



Chapter 7

Overview and discussion

Throughout the analysis of the QZE we have made a clear distinction between the two
manifestations of QZE, in order to clear out the confusion around the QZE. We want to
make an overview over the results we have gathered and discuss certain aspects regarding
this matter.

7.1 QZE: projective measurements

In total we have considered three cases that reveal QZE with projective measurements.
The first two of the cases are related to the two-level QD undergoing spontaneous emission
and pure dephasing, respectively. These reveal the QZE only if the dissipation rates γ
and Γ are time-dependent, which can be derived by neglecting the Markov approximation
in the derivation of the master equations. We derived the expressions (5.63), (5.57) and
performed projective measurements on the systems, which eventually led to the QZE in
both cases.
In the last case a two-level QD was influenced by ‘continuous coupling’ explicitly, and
frequent projective measurements were performed. The same system was used to the-
oretically derive the genuine QZE with projective measurements in section (3.2). The
simulation (4.14) also revealed that the QZE was obtained as theorized.

7.2 QZE: strong ‘continuous coupling’

Pascazio states in [15] that the QZE can be provoked by practically any external interac-
tion that greatly disturbs the system. This statement is consistent with our findings in
the cases we have studied throughout the thesis.

Regarding this matter, the relevant cases for the two-level QD are those for which the QD
undergoes pure dephasing. Our simulations and calculations revealed that it is possible
to obtain the QZE if the QD is influenced by a large dephasing rate γ (4.3) or by strong
‘continuous coupling’ (5.2.1), which requires that the dissipation rate γ is dependent on Ω.
However, it has to be emphasized that the first of these cases may be violating the Born
approximation (2.5.1.1). The Born approximation restricts our master equations to only
consider weak dissipative effects of the environment. Since the dephasing rate in this case
is increased immensely, it might violate the approximation. Every other case considered
in the thesis should be consistent with our approximations; namely all cases with strong
‘continuous coupling’, since driving does not represent a dissipation effect, hence the Born
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approximation is not violated.

For the three-level QD the considered cases have all had a lower subsystem influenced by
’continuous coupling’, while respectively having spontaneous emission (4.22a), ’continuous
coupling’ (4.22b) or a combination of these (4.22c) in its upper subsystem. In the first
two of these cases, the QZE was obtained by influencing the lower subsystem with strong
‘continuous coupling’. It should however be noted that the case with spontaneous emis-
sion in its upper level, requires a dissipation rate Γ dependent on Ω in order to obtain QZE.

The third three-level QD case (4.22c) was special. It was the only system of those we
studied that was prepared in its ground state, which by many may seem redundant since
the state can be ‘frozen’ by simply not driving the system. It represents however a simpli-
fied version of Itano et al. experiment [1] in 1989, which frequently is reckoned as being
evidence for the genuine QZE. This case therefore gave us the opportunity to simulate
their results and argue the origin of the appearance of the QZE.

Similar to Itano’s experiment our simulations revealed the QZE by strongly driving the
upper subsystem. As with all our cases obtaining QZE with strong driving, the appear-
ance of QZE in Itano’s experiment is a not a result of wave function collapse – projective
measurements – but appears as a consequence of great disturbance from the environment
that dominates the evolution of the system. The strong environmental influence on Itano’s
system may be though of as creating what generally is know as electromagnetically in-
duced transparency [30] which originates from strong ‘continuous coupling’ – a statement
supported by Pascazio and Ballentine [28], [14].



Chapter 8

Conclusion

In this thesis we have investigated different manifestations of the QZE and considered
analytical and numerical differences in addition to interpretational consequences. With the
use of the Lindblad formalism we were able to study two- and three-level QDs undergoing
spontaneous emission and dephasing with or without driving. Firstly, we showed the QZE
by projective measurements for QDs with spontaneous emission, pure dephasing as well
as for QDs exclusively influenced by ‘continuous coupling’. Secondly, we encountered a
case for a two-level QD showing QZE provoked by strong dephasing effects. Finally, we
showed that it was possible to obtain QZE by strong ‘continuous coupling’. For this case
we studied a three-level QD only influenced by ‘continuous coupling’, and then also two-
and three-level QDs with spontaneous emission rates shown to be dependent on coupling
strength Ω.

Our investigation has included simulating the experiment by Itano [1], which is often cited
regarding experimental evidence of the QZE formulated by Sudarshan several decades ago.
We have found that this experiment does not require the notion of wave function collapse
to be explained, and as such the QZE in this experiment is different in nature to the QZE
proposed by Sudarshan [2]. The QZE by projective measurements have been shown to be
theoretically possible, but has never been experimentally confirmed.

Hence, in the light of our results and analysis we conclude that the ’physical appearance’
of the QZE should be regarded as a more general phenomenon caused by strong distur-
bances [14][28]. Because of the fundamental differences of the manifestations, one must be
careful to distinguish between them. Failing to do so, experiments might be interpreted
in misleading ways [14].
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Appendix A

Appendix

A.1 Analytical solutions to Lindblad master equations

Here we present computed values of referenced quantities. We use the computer algebra
software Wolfram Mathematica 10.

A.1.1 Spontaneous emission

The eigenvalues to the coefficient matrix are

λ =

{
−Γ

2
,
1

4
(−3Γ− ε), 1

4
(ε− 3Γ)

}
, (A.1)

where we have defined ε =
√

Γ2 − 16Ω2. The normalized eigenvectors are

v1 = (1, 0, 0)T (A.2)

v2 =

0,
Γ− ε

Ω
√

(Γ−ε)2

Ω2 + 16
,

4√
(Γ−ε)2

Ω2 + 16

T

(A.3)

v3 =

0,
Γ + ε

Ω
√

(Γ+ε)2

Ω2 + 16
,

4√
(Γ+ε)2

Ω2 + 16

T

. (A.4)

The constants ci in the complete solution

α(t) =

3∑
i=1

cie
λitvi, (A.5)

are found from the initial values. Using (α1(0), α2(0), α3(0)) = (0, 0, 1) as the initial value,
corresponding to the system being in the excited state, we find

c1 = 0 (A.6)

c2 =

√
(Γ−ε)2

Ω2 + 16
(
Γ3 + Γ2ε+ 5ΓΩ2 + Ω2ε

)
4ε (Γ2 + 2Ω2)

(A.7)

c3 =

√
Γ2+2Γε+16Ω2+ε2

Ω2

(
−Γ3 + Γ2ε− 5ΓΩ2 + Ω2ε

)
4ε (Γ2 + 2Ω2)

. (A.8)
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A.1.2 Pure dephasing

The eigenvalues to the coefficient matrix are

λ = {−2γ,−γ − ε, ε− γ}, (A.9)

where we have defined ε ≡
√
γ2 − Ω2. The normalized eigenvectors are

v1 = (1, 0, 0)T (A.10)

v2 =

0,− γ + ε

Ω
√

(γ+ε)2

Ω2 + 1
,

1√
(γ+ε)2

Ω2 + 1

T

(A.11)

v3 =

0,
ε− γ

Ω
√

(γ−ε)2

Ω2 + 1
,

1√
(γ−ε)2

Ω2 + 1

T

. (A.12)

Using (α1(0), α2(0), α3(0)) = (0, 0, 1) as the initial value, corresponding to the system
being in the excited state, we find the constants ci to be

c1 = 0 (A.13)

c2 =
(ε− γ)

√
(γ+ε)2

Ω2 + 1

2ε
(A.14)

c3 =
(γ + ε)

√
γ2−2γε+Ω2+ε2

Ω2

2ε
. (A.15)

A.2 Numerical solution to two-level systems with
time-dependent dissipation

asd

1 function [t, B] = TwoLS averagedOutcomes( nMeasurements, ...
measurementTimes, spon, deph, gamma0, omega, varargin )

2

3 %% Preprocessing
4

5 % data structures
6 startTimes = linspace(measurementTimes(1),measurementTimes(2), ...

nMeasurements);
7 timeBetweenMeasurements = startTimes(2) − startTimes(1);
8

9 B = [];
10 t = [];
11 measurementOutcomes = zeros(1,nMeasurements);
12

13 % measurement basis
14 b1 = [1;0];
15 b2 = [0;1];
16

17 bOp1 = b1 * b1';
18 bOp2 = b2 * b2';
19

20 %% Solution
21

22 % before first measurement
23 t0 = 0;



60 A Appendix

24 initial state vector = [1; 0];
25 initial state = initial state vector * initial state vector';
26

27 % solving
28 [IC1, IC2, IC3] = TwoLS ICs( initial state );
29 odefun = @(t,B) TwoLS grad(t, B, t0, gamma, omega, spon, deph);
30 [tnew, Bnew] = ode45( odefun , [t0, t0 + startTimes(1)], [IC1 IC2 IC3]);
31

32 B = [ B ; Bnew];
33 t = [t; tnew];
34

35

36 % after first measurement
37

38 for i = 1:nMeasurements
39 state = DensityOpFromBlochVector( B(end,:) );
40 probabilities(1) = trace( bOp1 * state);
41 probabilities(2) = trace( bOp2 * state);
42

43 initial state = probabilities(1) * bOp1 + probabilities(2) * bOp2;
44

45 % solving
46 [IC1, IC2, IC3] = TwoLS ICs( initial state );
47 t0 = startTimes(i);
48 odefun = @(t,B) TwoLS grad(t, B, t0, gamma, omega, spon, deph);
49 [tnew, Bnew] = ode45( odefun , [t0, t0 + timeBetweenMeasurements], ...

[IC1 IC2 IC3]);
50

51 B = [ B ; Bnew];
52 t = [t; tnew];
53

54 end
55

56 end

where the functions TwoLS ICs are given by TwoLS grad 1

1 function [ IC1, IC2, IC3 ] = TwoLS ICs( initial state )
2

3 sigmax = [0 1; 1 0];
4 sigmay = [0 −1i; 1i 0];
5 sigmaz = [1 0; 0 −1];
6

7 IC1 = trace(initial state * sigmax);
8 IC2 = trace(initial state * sigmay);
9 IC3 = trace(initial state * sigmaz);

10

11 end
12

13

14

15

16

17 function [ grad ] = TwoLS grad( t, B, t0, gamma, omega, spon, deph)
18 %Returns gradient of bloch vector
19 % t: time, B: bloch vector
20

21

22 sigmax = [0 1; 1 0];
23 sigmay = [0 −1i; 1i 0];
24 sigmaz = [1 0; 0 −1];
25
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26 A = spon * [0 0; 1 0] + deph * sigmaz;
27

28 p =1/2 * [ 1 + B(3) B(1) − 1i*B(2) ; ...
29 B(1) + 1i*B(2) 1 − B(3) ];
30

31 cA = ctranspose(A);
32 Lindblad = A*p*cA − 1/2*( cA*A*p + p*cA*A);
33

34 H = omega/2 * [ 0 1 ; 1 0 ];
35

36 dpdt = −1i*(H * p − p * H) + gamma(t−t0) * Lindblad;
37

38 grad = zeros(3,1);
39

40 grad(1) = trace( dpdt * sigmax );
41 grad(2) = trace( dpdt * sigmay );
42 grad(3) = trace( dpdt * sigmaz );
43

44

45 end

A.3 Time dependent spontaneous emission rate

1 function gamma = sponGamma(t)
2

3 gamma0 = 0.28;
4 omega c = 2.2;
5 omega l = 2.2;
6

7 eta = 100;
8

9 %% Preprocessing
10 Jtilde = @(omega) eta .* omega.ˆ3 .* exp(−(omega./omega c));
11

12 %% Calculating gamma
13 f = @(omega) sin(t.* (omega l − omega) ) ./ (omega l − omega) .* ...

Jtilde(omega);
14 gamma = 2 * integral( f, 0.01, 1e2);

A.4 Time dependent dephasing rate

1 function gamma = dephGamma(t)
2

3 T = 300;
4 beta = 7.6 / T;
5 gamma0 = 0.28;
6 omega c = 2.2;
7 Omega = 3;
8

9 alpha = 0.03;
10

11 %% Preprocessing
12 Jtilde = @(omega) alpha .* omega.ˆ3 .* exp(−(omega./omega c).ˆ2);
13 nfunc = @(omega) 1./( exp(omega .* beta) − 1 );
14

15 %% Calculating gamma
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16 f = @(omega) sin(t.* (Omega − omega) ) ./ (Omega − omega) .* ...
Jtilde(omega) .* nfunc(omega);

17 gamma = 2 * integral( f, 0.01, 1e3);

A.5 Complete master equation solved in Mathematica

1 Solution
2

3 kom[a , b ] := a.b − b.a;
4 x := 1/2 ( {
5 {1, 1},
6 {−1, −1}
7 } )
8 n := 1/2 ( {
9 {1, −1},

10 {1, −1}
11 } )
12 \[Sigma]z := ( {
13 {1, 0},
14 {0, −1}
15 } )
16 \[Sigma]x := ( {
17 {0, 1},
18 {1, 0}
19 } )
20 \[Sigma]y = ( {
21 {0, −I},
22 {I, 0}
23 } );
24 a1[t ] = Exp[−I \[CapitalOmega] t] x + Exp[I \[CapitalOmega] t] n;
25 ps[t ] := 1/2 ( {
26 {(1 + az@t), ax@t − I ay@t},
27 {ax@t + I ay@t, (1 − az@t)}
28 } );
29 (* dephasing *)
30 P = −\[CapitalOmega]/2 I kom[\[Sigma]x,
31 ps[t]] − (kom[a1[0],
32 x.ps[t]] (\[Gamma][−\[CapitalOmega]] + \[CapitalDelta]B[−\
33 \[CapitalOmega]]) +
34 kom[a1[0], n.ps[t]] (−\[CapitalDelta]A[−\[CapitalOmega]])) − (kom[
35 ps[t].x, a1[0]] (\[CapitalDelta]A[−\[CapitalOmega]]) +
36 kom[ps[t].n,
37 a1[0]] (\[Gamma][−\[CapitalOmega]] − \
38 \[CapitalDelta]B[−\[CapitalOmega]])) − (kom[a1[0],
39 x.ps[t]] (\[CapitalDelta]A[\[CapitalOmega]]) +
40 kom[a1[0],
41 n.ps[t]] (\[Gamma][\[CapitalOmega]] − \
42 \[CapitalDelta]B[\[CapitalOmega]])) − (kom[ps[t].x,
43 a1[0]] (\[Gamma][\[CapitalOmega]] + ...

\[CapitalDelta]B[\[CapitalOmega]]) \
44 + kom[ps[t].n, a1[0]] (−\[CapitalDelta]A[\[CapitalOmega]])) ;
45

46 Correlation functions
47

48 timestep = 0.01;
49 \[Alpha] = 0.03;
50 \[Omega]c = 2.2;
51 Omega = 1; (* Driving omega *)
52 tmax = 10;
53 J[\[Omega] ] := \[Alpha] \[Omega]ˆ3 Exp[−(\[Omega]/\[Omega]c)ˆ2];
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54 \[CapitalGamma] = beta = 7.6/20; (* *)
55 nfunc[\[Omega] ] := (Exp[\[Omega] beta] − 1)ˆ−1;
56

57 c12[t ] :=
58 NIntegrate[
59 J[\[Omega]] Exp[−I \[Omega] t] (1 + nfunc[\[Omega]]), {\[Omega], ...

0.01, 7},
60 Method −> {Automatic, "SymbolicProcessing" −> False}, MaxRecursion ...

−> 20,
61 AccuracyGoal −> 7];
62 c12Interp =
63 ListInterpolation[Table[c12[t], {t, 0, tmax, timestep}], {0, tmax}];
64 c12intfunc[\[CapitalOmega] ] :=
65 NIntegrate[Exp[I \[CapitalOmega] t] c12Interp[t], {t, 0.01, tmax},
66 Method −> {Automatic, "SymbolicProcessing" −> 0}, MaxRecursion −> 20]
67 c21[t ] :=
68 NIntegrate[
69 J[\[Omega]] Exp[I \[Omega] t] nfunc[\[Omega]], {\[Omega], 0.01, 7},
70 Method −> {Automatic, "SymbolicProcessing" −> False}, MaxRecursion ...

−> 20,
71 AccuracyGoal −> 7];
72 c21Interp =
73 ListInterpolation[Table[c21[t], {t, 0, tmax, timestep}], {0, tmax}];
74 c21intfunc[\[CapitalOmega] ] :=
75 NIntegrate[Exp[I \[CapitalOmega] t] c21Interp[t], {t, 0.01, tmax},
76 Method −> {Automatic, "SymbolicProcessing" −> 0}, MaxRecursion −> 20]
77

78 \[CapitalDelta]Bn = I*Im@c12intfunc[Omega];
79 \[CapitalDelta]An = −I Im@c12intfunc[−Omega];
80 \[CapitalDelta]Ap = I Im@c21intfunc[Omega];
81 \[CapitalDelta]Bp = −I*Im@c21intfunc[−Omega];
82 \[Gamma]p = Re@c21intfunc[−Omega];
83 \[Gamma]n = Re@c12intfunc[Omega];
84

85 Solving the master eq.
86

87 dpdt = P /. {\[CapitalDelta]A[\[CapitalOmega]] −> \[CapitalDelta]Ap, \
88 \[CapitalDelta]A[−\[CapitalOmega]] −> \[CapitalDelta]An, \[CapitalDelta]B[\
89 \[CapitalOmega]] −> \[CapitalDelta]Bp, ...

\[CapitalDelta]B[−\[CapitalOmega]] −> \
90 \[CapitalDelta]Bn, \[Gamma][−\[CapitalOmega]] −> \[Gamma]n, \[Gamma][\
91 \[CapitalOmega]] −> \[Gamma]p} // Simplify;
92 motionEq[\[Sigma] ] := Simplify[Tr[dpdt.\[Sigma]]];
93 eq1 = ax'[t] == motionEq@\[Sigma]x;
94 eq2 = ay'[t] == motionEq@\[Sigma]y;
95 eq3 = az'[t] == motionEq@\[Sigma]z;
96

97 nsolComplete =
98 NDSolve[{eq1, eq2, eq3, ax[0] == 0, ay[0] == 0,
99 az[0] == 1} /. \[CapitalOmega] −> Omega, {ax[t], ay[t], az[t]}, ...

{t, 0,
100 tmax}];
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