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Structured illumination microscopy (SIM) is an optical super-resolution technique that en-
ables live-cell imaging beyond the diffraction limit. Reconstruction of SIM data is prone to
artefacts, which becomes problematic when imaging highly dynamic samples because previ-
ous methods rely on the assumption that samples are static. We propose a new transformer-
based reconstruction method, VSR-SIM, that uses shifted 3-dimensional window multi-
head attention in addition to channel attention mechanism to tackle the problem of video
super-resolution (VSR) in SIM. The attention mechanisms are found to capture motion in
sequences without the need for common motion estimation techniques such as optical flow.
We take an approach to training the network that relies solely on simulated data using videos
of natural scenery with a model for SIM image formation. We demonstrate a use case en-
abled by VSR-SIM referred to as rolling SIM imaging, which increases temporal resolution
in SIM by a factor of 9. Our method can be applied to any SIM setup enabling precise
recordings of dynamic processes in biomedical research with high temporal resolution.

1. INTRODUCTION

Optical microscopy is limited by the diffraction of light
occurring in the optics of imaging systems. For visible
light, the diffraction limit, also known as the Abbe res-
olution limit [1], is around 200 nm laterally. Structured
illumination microscopy (SIM) is an optical microscopy
technique that can achieve a two-fold spatial resolution
improvement, thus enabling sub-diffraction limit imag-
ing – a regime important for biomedical imaging [2].
Furthermore, SIM is live-cell compatible as it can be
performed at relatively low excitation power. A signif-
icant challenge in applying SIM, however, remains the
computational reconstruction of the acquired data into
super-resolved images. The reconstruction problem in
SIM is an inverse problem similar to deconvolution [3]
but makes use of shifted high frequency information.
The frequency-shifted signals are obtained by illuminat-
ing the sample with a temporal sequence of illumination
patterns, generally sinusoidal fringes with varying ori-
entations and phase shifts, and an image is captured for
each respective pattern.

The collection of SIM images corresponding to the
sequence of illumination patterns, typically a stack of
9 frames, is then used to reconstruct a super-resolved
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Fig. 1. Structured illumination microscopy image se-
quences of dynamic samples give rise to motion arte-
facts when previous reconstruction methods are used
such as cross-correlation SIM (CC-SIM) [4], FairSIM [5]
and ML-SIM [6]. The input image stack is experimental
data of imaged microtubules.
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image. Since SIM image stacks can be recorded at high
frame rates, it is possible to image highly dynamic phe-
nomena sequentially [7, 8]. However, the reconstruction
methods that are most widely used do not make use of
the temporal dimension of the acquired data [4, 5, 9, 10],
because the standard semi-analytical Fourier formalism
for reconstruction assumes a static sample. Hence, mo-
tion of the sample between acquired frames manifests as
motion blur and reconstruction artefacts – see Fig. 1.

Deep learning offers an effective way to achieve mo-
tion compensation for video super-resolution (VSR). Re-
cent studies demonstrate reconstruction of SIM images
using neural networks [11–13], offering advantages such
as improved speed and robustness to noise, but none
of these reconstruction methods make use of the tempo-
ral dimension of the live-cell data. To obtain a spatio-
temporal reconstruction method for SIM, we identify the
following two problems that need to be overcome: (a)
ground truth data for supervised learning will inherit
motion blur if the targets are obtained from traditional
reconstruction methods; (b) regular motion estimation
methods do not work accurately on SIM data. Machine
learning implementations for SIM reconstruction gener-
ally use as ground truth data a collection of carefully per-
formed reconstructions from traditional methods, which
relies on an analytical framework that assumes static
samples, thus causing motion artefacts to manifest in the
training data. As for (b), a common way to incorporate
high-level reasoning about motion and occlusion in a
model is bidirectional optical flow. However, such algo-
rithms are not directly suited for SIM imaging, because
the illumination patterns in the raw data prevent accu-
rate calculation of motion – the varying patterns tend to
be confused with motion of the subject as illustrated on
Fig. 2.

We propose a method to address these two problems
by building upon recent advances in using neural net-
works for SIM reconstruction and video super-resolution.
We generalise the approach to supervised learning pro-
posed in our previous method ML-SIM [6], in which SIM
image formation is modelled to obtain synthetic train-
ing data. Instead of simulating SIM image data using
static images, we use video sequences instead, which
facilitates the learning of motion compensation. Instead
of simulating SIM image data using static images, we
use video sequences instead, such that the training data
can facilitate the learning of motion compensation. To
address (b), we propose a 3D transformer network archi-
tecture that solely relies on attention mechanism rather
than optical flow to handle subject motion. Our contri-
butions are three-fold:

Optical flow from SIM framesOptical flow from image sequence

Fig. 2. Optical flow computed from video-rate SIM
data leads to artefacts that are problematic for standard
motion compensation techniques.

• We demonstrate a new approach to synthesising
training data for machine learning models to learn
spatio-temporal SIM reconstruction, in which SIM
image formation is simulated using video data se-
quences as inputs. This enables models to be opti-
mised for highly dynamic sequential live-cell SIM
data.

• We propose a video super-resolution transformer
architecture that uses shifted windows with 3-
dimensional patches to capture the spatio-temporal
correlations in live-cell SIM data with windowed
multi-head attention. We introduce residual con-
nections between transformer blocks with channel
attention as an additional attention mechanism.

• We showcase a unique application of our method,
rolling SIM imaging, where a moving window of
frames is used for reconstruction. Our reconstruc-
tion method lends itself particularly well to rolling
SIM imaging because it can be recast as a video
super-resolution problem, where the reconstruction
of each SIM stack uses SIM frames from the pre-
vious and subsequent SIM stack acquisition. This
increases the temporal resolution of SIM imaging by
a factor of 9, enabling dynamic processes in biomed-
ical research to be resolved without the motion arte-
facts that plague previous methods.

An online, ready-to-use and interactive implementa-
tion can be found at http://vsr-sim.github.io. Source
code, datasets and trained models are provided at
http://github.com/charlesnchr/vsr-sim.

2. RELATED WORK

Optical super-resolution microscopy. Optical super-
resolution microscopy techniques have emerged over
the last three decades to now form an essential tool for
medical imaging. Several semi-analytical methods have
been proposed for SIM reconstruction [4, 5, 9, 14–16], e.g.
FairSIM and OpenSIM. These methods rely on Fourier
transformations, Wiener filters and iterative deconvolu-
tion, which can induce honeycomb and ringing artefacts,
especially when noise and motion blur are significant
[17]. Multiple machine learning implementations for
SIM reconstruction have been proposed in the past
year [6, 12, 13] based on convolutional neural networks
that take in SIM stacks and output super-resolved
images. Two such examples are U-Net-SIM [12] and
ML-SIM [6] using U-Net [18] and RCAN [19] backbones,
respectively. These methods offer reconstruction with
fewer frames, higher processing speed and increased
robustness to noise compared to Fourier methods. None
of these studies considered fast-moving samples. In
[20], however, SIM is applied to image highly dynamic
samples using a semi-analytical reconstruction method.
This is achieved using rolling SIM imaging, as further
explored in Sec. D, with a very short exposure time,
such that motion artefacts can be minimised. This can
lead to high frame rates, but at a significant loss of
image quality, i.e. low signal-to-noise ratio from which
spatial resolution decreases. This trade-off between
temporal and spatial resolution is prevalent in the field

http://vsr-sim.github.io
https://github.com/charlesnchr/vsr-sim
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because none of the existing reconstruction methods
for SIM exploits the spatio-temporal nature of live-cell
data. Applications of existing methods may only reduce
motion artefacts via this trade-off, whereas the capability
to perform motion compensation during reconstruction
would handle these artefacts directly while maintaining
image quality.

Image and video super-resolution. Methods using convo-
lutional neural networks as a backbone have long been
state-of-the-art for image and video super-resolution
(SR). Dong et al. pioneered the pursuit of learning-based
methods for image SR by achieving superior perfor-
mance to traditional methods using a CNN with only
three layers [21]. A similar network for VSR was pro-
posed by Kappeler et al. [22]. With the emergence
of residual networks [23], it became possible to build
deeper networks. Ledig et al. repurposed ResNet for SR
with the network SRResNet [24]. An attention mech-
anism was introduced by Zhang et al. [25] with resid-
ual channel attention network (RCAN) becoming a new
state-of-the-art method. More recently, multi-head atten-
tion has been introduced for SR using transformer-based
architectures with IPT [26] and SwinIR [27].

For VSR, the spatio-temporal correlations between
input frames are essential to model for optimal perfor-
mance. Most VSR methods use frame alignment enabled
by motion estimation and compensation [28]. For mo-
tion estimation, a popular approach is using optical flow
[29]. A state-of-the-art VSR method that uses optical
flow is RBPN [30], which is based on a recurrent CNN
architecture. Recently, the method BurstSR [31] was pro-
posed for SR reconstruction of images taken in quick
succession with a handheld camera. The problem is sim-
ilar in principle to SIM reconstruction, but the method is
not directly applicable as it is based on optical flow for
alignment. Methods that do not use optical flow tend
to rely on 3D convolutional networks [32, 33]. However,
Choi et al. demonstrated that channel attention as a sole
mechanism is a strong baseline for motion compensation
in the related problem of video interpolation [34].

Vision transformer. With the advent of Vision Trans-
former (ViT) [35], transformer networks are beginning to
replace CNNs for low-level computer vision tasks. ViT
introduced multi-head self-attention (MSA) for image
input, which proves to be a very flexible mechanism for
vision, but does require a substantial number of train-
able parameters compared with equivalently perform-
ing CNNs. Liu et al. demonstrated that using a hierar-
chy of shifted window MSA modules, their proposed
transformer architecture, Swin, can incorporate the large
receptive field of ViT, while having the same efficient
inductive bias that CNNs offer [36]. Variations of the
Swin transformer have become state-of-the-art in image
restoration, SwinIR [27], and video classification [33].

3. DATA GENERATION

Acquiring a real pairwise dataset for supervised learning
in the context of super-resolution microscopy is prob-
lematic. Experimentally, the ground truths cannot be
obtained, which leaves the options of using either the
output from traditional reconstruction methods as a tar-

Test sets
Motion regime

Static Medium Fast Extreme

Source DIV2K BBC REDS REDS

Data type Image Video Video Video

Frame skip - No No Yes

Samples # 200 50 10 10

Max flow 0 10.2 27.3 46.2

Median flow 0 1.5 10.4 18.1

Table 1. The four test sets that have been prepared for
experiments using the source datasets DIV2K [39], a
subset of our BBC video dataset, and REDS [40]. The
motion is amplified by skipping every other frame for
the Extreme test set. Motion is quantified by calculat-
ing max and median of the magnitude of optical flow
between the first and center frame in all sequences for
a dataset at 512x512 resolution.

get [13, 37] or a different optical super-resolution modal-
ity [38]. The former approach prevents the method from
generalising and improving beyond traditional methods,
and the latter is highly prone to artefacts, while not being
live-cell compatible. Therefore, we take the approach of
generating a synthetic dataset using a SIM image forma-
tion model [6] on a video dataset, which provides ideal
ground truths and diverse training data.

Video dataset. Inspired by DIV2K [39] for SISR, we
built a large video dataset focusing on diversity and
high-resolution footage. Specifically, this dataset is de-
signed to have targets of at least 1024x1024 pixels to
make the image formation model more consistent with
typical experimental data from SIM systems, thus facil-
itating model inference performance. Many previous
VSR datasets are limited in scope and are intended for
video classification [41, 42] or more suitable for testing,
e.g. REDS [40], while others only have a small subset of
high-resolution, diverse data, e.g. Vimeo90k [43]. Our
dataset consists of 200 hours of high-quality footage from
nature documentaries produced by the BBC. Samples
are included here with permission and video data has
been obtained under the ERA License. The collection of
videos is sampled to generate 100,000 image sequences,
each consisting of 9 frames. A subset is reserved for test-
ing, for which we also use DIV2K and REDS. The DIV2K
dataset is a single image dataset, and with the image
formation model described in the following paragraph,
these still images correspond to imaging static subjects.
The REDS dataset features videos recorded with a hand-
held camera with a high level of image translation from
frame to frame. To make the motion in the REDS video
even more extreme, we prepared an extra test set by
sampling the videos with frame skipping, such that only
every second frame was kept. These datasets were used
to prepare four test sets to assess reconstruction perfor-
mance in different motion regimes. The difficulty as-
sociated with a dataset depends on the level of motion
that its samples exhibit. We quantify this using the mean
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Fig. 3. Architecture of the proposed windowed channel attention network. Skip connections are added between the
attention blocks in a similar fashion to residual networks.

and maximum value of optical flow magnitude averaged
over all samples in the respective datasets. See Tab. 1
for further specification. Further details on the dataset
sampling is provided in Supplementary.

Image formation model. SIM enables optical super-
resolution by encoding structural details corresponding
to high spatial frequencies of the sample into signals
in the lower frequency domain. By unmixing the low-
frequency data, information can then be recovered that
would otherwise be lost with conventional wide-field
imaging. The diffraction limit is described by the optical
transfer function (OTF), which represents the transmit-
table bandwidth of spatial frequency through an imaging
system. It is by shifting high spatial frequencies into the
accessible passband that super-resolution by SIM is ob-
tained. The OTF is the Fourier transform of the point
spread function (PSF), which is the blur kernel in direct
space. Conventional wide-field SIM uses sinusoidal il-
lumination patterns formed by the interference of two
beams [14]. The illumination pattern has an orientation
and a phase shift, which are typically varied over 3 val-
ues to ensure symmetric frequency support, thus leading
to a stack of 9 frames with different patterns. In math-
ematical terms, SIM reconstruction solves the inverse
problem of this excitation and blurring operation, thus
determining the fluorescent signal that represents the
sample.

The ideal OTF is generated based on a given objective
numerical aperture, pixel size and fluorescence emis-
sion wavelength. The illumination stripe patterns are
calculated from their spatial frequency k0 and phase φ,

Iθ,φ(x, y) = I0

[
1− m

2
cos

(
2π(kxx + kyy) + φ

)]
, (1)

where kx, ky = k0 cos θ, k0 sin θ for a pattern orientation
θ relative the horizontal axis, φ defines the phase of the
pattern (i.e. the lateral shift in the direction of k0) and
m is the modulation depth, which defines the relative
strength of the super-resolution information contained in
the raw images. The fluorescent response of the sample
can then be modelled by the multiplication of the sample
structure, St(x, y), i.e. input image, at time t and the
illumination pattern intensity Iθ,φ(x, y). The final image,
Dt,θ,φ(x, y), is formed after blurring by the PSF, H(x, y),
and addition of white Gaussian noise, N(x, y),

Dt,θ,φ(x, y) =
[
St(x, y)Iθ,φ

]
⊗ H(x, y) + N(x, y), (2)

where⊗ is the convolution operation. The set of sampled
images from a sequence in the video dataset corresponds

to the time points t ∈ [1, 9]. A full SIM stack is comprised

of the set
{

Dt,θ,φ | t ∈ [1, 9]
}

, where each value of t is as-
sociated with a distinct illumination pattern, i.e. a unique
permutation of θ and φ. Each consecutive 9 frames then
contain a full cycle of illumination patterns. In addition
to Gaussian noise, added pixel-by-pixel, a random error
is added to the parameters for the stripe patterns, k0, θ
and φ, to approximate the inherent uncertainty in an ex-
perimental setup for illumination pattern generation as
well as forcing the model to generalise when learning the
reconstruction task from the data. Poisson noise can fur-
ther be introduced to more realistically approximate the
noise sources present in experimental data. For imple-
mentation details and specification of optical parameters
see Supplementary.

4. MODEL ARCHITECTURE

The proposed model is inspired by the vision trans-
former network [35] in particular its more efficient
shifted window variant, Swin [36], with its extension
for video classification, Video Swin [33], and adaption
to image restoration, SwinIR [27]. Swin introduced the
inductive bias to self-attention called shifted window
multi-head attention (SW-MSA), which can be compared
to the inductive bias inherent to convolutional networks.
SwinIR introduced residual blocks to the Swin trans-
former to help preserve high-frequency information for
deep feature extraction. The Video Swin transformer
generalised the SW-MSA to three dimensions, such that
spatio-temporal data can be included in the local atten-
tion for the self-attention calculation. Further to this,
the success of the channel attention mechanism in [25]
inspires the inclusion of this other inductive bias in ad-
dition to 3D local self-attention following the SW-MSA
approach.

The inputs to the model have dimension T × H ×
W × C, where T is 9 for SIM reconstruction and C is 1. A
shallow feature extraction module in the beginning of
the network architecture Fig. 3 projects the input into a
feature map, F0, of T×H×W×D dimension, where the
embedding dimension, D, is a hyperparameter. The fea-
ture map is passed through a sequence of residual blocks,
denoted Window Channel Attention Block (WCAB)

Fi = HWCAB(Fi−1), i = 11, .., n (3)

Inside each WCAB is a sequence of Swin Transformer
Layers (STLs), in which multi-head self-attention is cal-
culated using local attention with shifted window mech-
anism. Inputs to STL layer is partitioned into T

P ×
HW
M2
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3D tokens of P×M2×D dimension. For a local window
feature, x ∈ RP×M2×D, query, key and value matrices,
{Q, K, V} ∈ RPM2×D, are computed by multiplication
with projection matrices following the original formu-
lation of transformers [44]. Attention is then computed
as

Attention(Q, K, V) = SoftMax(QKT/
√

d + B)V, (4)

where B ∈ RP2×M2×M2
is a relative positional bias found

to lead to significant improvements in [36]. STLs are
joined in a way similar to the residual blocks, although
the use of SW-MSA is alternated with a version with-
out shifted windows, W-MSA, ensuring that attention is
computed across window boundaries, which would not
have been the case without SW-MSA.

After the final STL, the m-th layer, in a WCAB, a
transposed 3-dimensional convolutional layer is used
to project the 3D tokens back into a T × H ×W × D fea-
ture map, Fi,m. A channel attention module is then used
on Fi,m to determine the dependencies between channels
following the calculation of the channel attention statis-
tic [25]. The mechanism works by using global adaptive
average pooling to reduce the feature map to a vector
which after passing through a 2D convolutional layer
becomes weights that are multiplied back onto Fi,m, such
that channels are adaptively weighed. A residual is then
obtained by adding a skip connection from the begin-
ning of the i-th WCAB to prevent loss of information,
i.e. low-frequency information, and the vanishing gra-
dient problem. A fusion layer combines the temporal
dimension and the channel dimensions. For the final
upsampling module, we use the sub-pixel convolutional
filter [45] to expand the image dimensions by aggregat-
ing the fused feature maps. The implementation will be
made available on Github and is provided in the Supple-
mentary.

18.19
Input Target

22.12
Single image

24.71
VSR-SIMStatic / Dynamic

12.91 30.98 32.28

Fig. 4. For static subjects (top row) the method defaults
to standard SIM reconstruction, which offers signif-
icant improvements over a deconvolution baseline
trained with the same architecture. For dynamic input
data (bottom row), the advantage of SIM diminishes
depending on the level of motion, but, importantly,
VSR-SIM does not generate motion artefacts in this
setting.

5. EXPERIMENTS

Implementation details. All models described in the fol-
lowing were trained using the Adam optimiser and a
mean squared error loss function with a learning rate
of 1e-4 that is halved every 100,000 iterations. A total

of 500,000 iterations were made, which equals 5 epochs
of the BBC training dataset. A set of 4 Nvidia A100
GPUs was used with a batch size per GPU of 4. Training
samples were randomly cropped to 128x128 inputs and
256x256 targets, while inference was performed with
512x512 inputs resulting in 1024x1024 outputs. For VSR-
SIM, the WCAB number, STL number, window size, em-
bedding size D and attention head number are set to 6,
6, 8, 96 and 6, respectively. The hyperparameters of the
other tested architectures follow original implementa-
tions and are further specified in Supplementary.

Reconstruction method
Test set (PSNR)

Static Medium

Wide-field baseline 22.79 17.31

CC-SIM [4] 27.99 16.98

OpenSIM [9] 28.34 14.04

FairSIM [5] 28.54 15.34

ML-SIM [6] 32.30 18.41

VSR-SIM (ours) 34.74 30.15

Table 2. Synthetic test sets were evaluated with four ex-
isting SIM reconstruction methods and VSR-SIM. The
static test set was generated using still images from
DIV2K [39] and the dynamic test set was generated
using image sequences sampled from the BBC video
dataset. At high levels of motion, other SIM reconstruc-
tion methods fail, but VSR-SIM can maintain a high
reconstruction quality for the dynamic test set.

VSR-SIMFairSIMFairSIM — full field-of-view

0.3 μm 0.3 μm1 μm

Fig. 5. Lysosome, a spherical vesicle, moving rapidly
in a sample of COS-7 cells. FairSIM is unable to han-
dle motion blur and reconstructs an elongated shape,
while VSR-SIM reconstructs a circular shape consistent
with the known shape of the lysosome.

A. Comparison with state-of-the-art
SIM reconstruction methods. The Static and Medium
test sets, see Tab. 1 for details, were evaluated with
our method, VSR-SIM, and four existing SIM methods:
CC-SIM [4], OpenSIM [9], FairSIM [5] and ML-SIM [6].
The results are listed in Tab. 2 based on peak signal-to-
noise ratio (PSNR). For the Static test set the difference
in reconstruction quality is relatively even, but for the
Medium test set, most previous methods fail to surpass
the diffraction-limited wide-field baseline. This is due
to motion artefacts and inaccurate numerical optimisa-
tion (e.g. parameter estimation using peak finding in the
case of FairSIM) becoming substantial. An example illus-
trating motion artefacts in reconstruction output for an
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SIM input

t1

t2

VSR-SIMOverlaid inputs Optical flow

½ (t2 + t1) ½ (t2 + t1)[ t1 , t2 ] [ t1 , t2 ]

Activation map

Fig. 6. Self-attention appears to emphasise the regions, in which motion occurs. The activations from the final atten-
tion heads are found to be well correlated with intensity maps of optical flow.

Method
Test set (PSNR)

Static Medium Fast Extreme

Bicubic† 26.40 26.35 22.63 21.08

SISR† 31.23 28.08 25.38 22.50

VSR† 31.15 28.15 25.41 22.98

VSR-SIM 34.74 30.15 26.04 22.95

RBPN 33.16 29.25 25.29 21.48

Wide-field 26.24 22.99 19.32 18.77

Table 3. Test of our method in different motion regimes
compared with baseline models trained and evaluated
using input without structured illumination. Methods
denoted with † are based on input without illumina-
tion patterns. The SISR and VSR baseline methods use
the same architecture as VSR-SIM. The sub-diffraction
limit resolution of SIM is achievable despite significant
motion in the input data, but is ultimately lost for an
extreme level of motion. RBPN that uses optical flow
for motion estimation was not found to perform com-
parably, suggesting that optical flow is not needed.

input sample with significant motion is shown in Fig. 1.
We tested the spatio-temporal resolution of recon-

struction on a real sample by imaging fast-moving lyso-
somes within the endoplasmic reticulum (ER) in COS-7
cells [46]. We use the SiR-lysosome fluorophore with an
excitation wavelength of 652 nm. Given the same raw
data, we observe differences in the shape of the lysosome
following reconstructing with FairSIM and VSR-SIM, see
Fig. 5. FairSIM produces an elongated shape suggesting
that motion blur is reconstructed into features, which is
further supported by the simulated test in Sec. C.

B. Ablation study
No structured illumination patterns. An important base-
line for SIM reconstruction is deconvolution, which in
this context is considered a deblurring operation that
does not need patterned illumination. A single-image
deconvolution method is useful for wide-field imaging
to counter the effect of the PSF and noise sources, but
it cannot provide optical SR. We trained a model with
the same architecture as VSR-SIM using an equivalent
dataset without illumination patterns to synthesise wide-
field images. On Fig. 4, example output can be seen

CA SW-MSA 3D window Score (PSNR)

X 29.06

X 29.48

X X 29.10

X X 30.01

X X X 30.15

Table 4. Ablation study on the inclusion of different
attention mechanisms. CA is channel attention [25],
SW-MSA [36] and 3D window refers to 3D window
attention for spatio-temporal data [33]. The scores are
based on evaluations on the Medium test set.

showing the SISR baseline model versus VSR-SIM that
takes SIM input. In the first input sample, the subject is
static, and the quality difference of the outputs is signifi-
cant. For more dynamic subjects, the difficulty of the SIM
reconstruction problem increases, and the difference to
the SISR baseline is smaller. We explored this further by
testing models on the four test sets shown in Tab. 1. The
four test sets are evaluated with a deconvolution SISR
baseline, a deconvolution VSR baseline, a state-of-the-art
VSR method RBPN [30] and our method VSR-SIM. The
two baseline models are based on the VSR-SIM architec-
ture but trained and tested without illumination patterns,
while RBPN and VSR-SIM are trained with SIM inputs.
Only the center frame in a sequence corresponding to
the target is input to the SISR model, whereas the VSR
model works on the full image sequence. The test results
in Tab. 3 show that VSR-SIM enables high-quality SIM
reconstruction in every motion regime. The quality of
the reconstruction outputs is markedly better than for
the baselines in all but the most extreme case with frame
skipping. Hence, at very high levels of motion, the SIM
modality does not offer an advantage over conventional
imaging. This is consistent with previous theoretical
findings of Ströhl and Kaminski [47].

Optical flow. As illustrated in Fig. 2 the determination
of optical flow can be hindered by the presence of an
illumination pattern. The quantitative impact of includ-
ing optical flow is tested by training RBPN, which uses
optical flow for inputting aligned frames into a recurrent
network in a mechanism called back-projection. In Tab. 3
it is found that the VSR-SIM model outperforms RBPN in
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Fig. 7. Reconstruction performance for VSR-SIM does not collapse for inputs that exhibit significant levels of motion.
Given the same inputs sequences, the motion can be controlled via a set delay between frames. This is done with
frame skipping for a high frame rate video sequence, REDS 120fps [40], and sequences of simulated beads.

different motion regimes although it does not use optical
flow. This indicates that the two attention mechanisms
of VSR-SIM are sufficient to attend to regions that exhibit
a lot of motion. This is further explored by visualising
the activation maps from the final attention heads in the
network, see Fig. 6. Comparing the two frames for t1 and
t2, it is clear that the motion in this sequence occurs in
a very specific region, which is picked up by the optical
flow intensity projection as well as the activation map.

Attention mechanisms. The respective importance of
multi-head self-attention, 3D window attention and
channel attention is investigated by training different
variants of the model on the same training dataset and
testing it with our Medium test set. The results are sum-
marised in Tab. 4. The most significant mechanism ac-
cording to these results is the multi-head self-attention,
which is implemented in a similar way to SwinIR [27]
when 3D window attention is excluded.

C. Speed limit of SIM reconstruction
As indicated in Table Tab. 3, the reconstruction quality
of VSR-SIM approaches that of a similarly trained de-
convolution method, meaning that the sub-diffraction
imaging enabled by SIM becomes increasingly difficult
to achieve as the motion increases. Importantly, however,
since VSR-SIM is trained on SIM video data spanning
multiple motion regimes, the case of extreme motion
does not cause the method to collapse and perform sig-
nificantly worse than the deconvolution baseline. We

investigate this ability further by reconstructing inputs
that have variable delay between frames and comparing
the results to those of ML-SIM, which has no capability
to handle motion. As the input data we sample from a
high frame rate video sequence from Reds [40] and gen-
erate images of moving simulated beads. The results are
shown on Fig. 7. Although the performance decreases as
the frame delay increases, the drop is much smaller than
for ML-SIM; namely 1 dB versus 6 dB over the range of
0-25 ms frame delay in case of the video sequence from
Reds. In case of the simulated beads, the performance
does not decrease. This indicates that VSR-SIM is able to
ignore the adjacent frames in a SIM stack if the motion is
high enough, which presumably becomes easier for the

i1 i2

Time

i3 i4 i5 i6 i7 i8 i9 i10 i18…

Image 1 Image 2
Traditional SIM reconstruction

Image 1

Rolling SIM reconstruction
Image 2 …

Image 18

SIM frames

Fig. 8. Rolling SIM imaging scheme for structured illu-
mination microscopy, which is utilised in the proposed
method.
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VSR-SIMFairSIMWide-field

Fig. 9. Our method, VSR-SIM, and the widely used method FairSIM applied to a SIM image sequence of the endo-
plasmic reticulum. Both methods offer significant improvements over wide-field imaging. The rectangle emphasises
a reshaping event of a tubule. Compared with FairSIM, our method achieves 9 times higher temporal resolution by
enabling the rolling SIM imaging scheme, see Fig. 8. The spatial resolution of FairSIM is higher, but the data contains
more artefacts.

model to do as the spatial separation between the beads
increases.

D. Rolling SIM algorithm

When performing SIM reconstruction with conventional
methods, the order of illumination patterns in a stack
has to be consistent across stacks. To increase the tempo-
ral resolution of SIM, one can use frames that belong to
adjacent stacks, thus having a rolling window for which
frames are included in the current stack, which reduces
the number of frames to be acquired per individual stack.
This scheme for SIM imaging is illustrated in Fig. 8. In
the scheme depicted here, the rolling window is shift-
ing by a single frame at a time, therefore increasing the
temporal resolution by a factor of 9. To reconstruct SIM
frames according to a rolling window, the reconstruction
method must be able to handle inputs with varying order
of illumination patterns. We address this by shuffling
illumination patterns for every training sample that is
generated for the training data. The shuffling is without
replacement such that a complete cycle is always present
in an input. This approach forces the model to learn to
handle arbitrary orderings facilitating the rolling SIM
scheme. Combined with the motion compensating recon-
struction method that can work at motion regimes that
traditionally would be unmanageable, imaging at high
speed with high granularity becomes possible. This ca-
pability lends itself well to applications with fast-moving
samples that exhibit intricate movement behaviour. The
scheme can similarly be applied for long-term imaging
by utilising the higher photon efficiency coming with
acquiring only a single frame per reconstructed output.

Improving temporal resolution. To demonstrate our
model applied to the rolling SIM scheme, we performed
an experiment imaging endoplasmic reticulum in COS-7
cells, labelled with the sec61-mApple and imaged with
an excitation wavelength of 561 nm. The FairSIM recon-
struction method [5] is used as a baseline as it is widely
used in the microscopy community [48]. The endoplas-
mic reticulum is the largest membrane structure inside

the cell and displays drastic reshaping with constant
tubule elongation, retraction and junction formation as
shown on Fig. 9. This dynamic reshaping is important to
regulate the morphology and function of ER inside the
cell. Compromised reshaping dynamics of ER is associ-
ated with a variety of diseases, including Alzheimer’s
disease [49], which makes it important to record, mea-
sure and understand these dynamics. On Fig. 9 an oc-
currence of reshaping can be seen in the area marked by
the rectangle over a sequence of 20 frames each acquired
with a 50 ms exposure time. Using FairSIM for the recon-
struction provides only two super-resolved SIM images,
rendering the reshaping event very abrupt and less no-
ticeable. Using VSR-SIM with the rolling SIM scheme,
the raw sequence leads to 19 reconstructed outputs, of
which 12 are included showing a significantly more gran-
ular process. FairSIM, however, is seen to recover more
high-frequency information in its two outputs indicating
that it achieves a higher spatial resolution, although at
the expense of more artefacts.

6. CONCLUSION

We have proposed a new transformer architecture
that combines channel attention with multi-head self-
attention computed using shifted 3D windows. This
architecture is shown to excel at the SIM reconstruction
task for dynamic inputs. A demonstration of using the
method for a use case in medical research is made with
implementation of rolling SIM imaging, in which a mov-
ing window of SIM frames is used for reconstruction
providing a temporal resolution that is 9 times higher,
while still providing comparable spatial resolution well
beyond the diffraction limit. Our method can be used
for any SIM imaging system as it is purely trained on
synthetic data using our image formation model that can
be easily adapted to different SIM configurations.
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